Page 1

Displaying 1 – 9 of 9

Showing per page

Simultaneous state and parameter estimation based actuator fault detection and diagnosis for an unmanned helicopter

Chong Wu, Juntong Qi, Dalei Song, Xin Qi, Jianda Han (2015)

International Journal of Applied Mathematics and Computer Science

Simultaneous state and parameter estimation based actuator fault detection and diagnosis (FDD) for single-rotor unmanned helicopters (UHs) is investigated in this paper. A literature review of actuator FDD for UHs is given firstly. Based on actuator healthy coefficients (AHCs), which are introduced to represent actuator faults, a combined dynamic model is established with the augmented state containing both the flight state and AHCs. Then the actuator fault detection and diagnosis problem is transformed...

Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems

Christopher Edwards, Halim Alwi, Chee Pin Tan (2012)

International Journal of Applied Mathematics and Computer Science

Sliding mode methods have been historically studied because of their strong robustness properties with regard to a certain class of uncertainty, achieved by employing nonlinear control/injection signals to force the system trajectories to attain in finite time a motion along a surface in the state-space. This paper will consider how these ideas can be exploited for fault detection (specifically fault signal estimation) and subsequently fault tolerant control. It will also describe applications of...

SMAC-FDI: A single model active fault detection and isolation system for unmanned aircraft

Guillaume J.J. Ducard (2015)

International Journal of Applied Mathematics and Computer Science

This article presents a single model active fault detection and isolation system (SMAC-FDI) which is designed to efficiently detect and isolate a faulty actuator in a system, such as a small (unmanned) aircraft. This FDI system is based on a single and simple aerodynamic model of an aircraft in order to generate some residuals, as soon as an actuator fault occurs. These residuals are used to trigger an active strategy based on artificial exciting signals that searches within the residuals for the...

Special issue on decentralized control of large scale complex systems

Lubomír Bakule (2009)

Kybernetika

This special issue provides information on current and future research directions in the emerging field of Decentralized Control of Large Scale Complex Systems. There is generally adopted view that a dynamic system is large scale complex whenever it is necessary to partition its analysis or synthesis problem to manageable subproblems. Its fundamental characteristics in modeling and control are high dimensionality, uncertainty, information structure constraints, and delays. Theory of large scale...

Supervisory fault tolerant control of the GTM UAV using LPV methods

Tamás Péni, Báltin Vanek, Zoltán Szabó, József Bakor (2015)

International Journal of Applied Mathematics and Computer Science

A multi-level reconfiguration framework is proposed for fault tolerant control of over-actuated aerial vehicles, where the levels indicate how much authority is given to the reconfiguration task. On the lowest, first level the fault is accommodated by modifying only the actuator/sensor configuration, so the fault remains hidden from the baseline controller. A dynamic reallocation scheme is applied on this level. The allocation mechanism exploits the actuator/sensor redundancy available on the aircraft....

Supervisory fault tolerant control with integrated fault detection and isolation: A switched system approach

Hao Yang, Bin Jiang, Vincent Cocquempot, Lingli Lu (2012)

International Journal of Applied Mathematics and Computer Science

This paper focuses on supervisory fault tolerant control design for a class of systems with faults ranging over a finite cover. The proposed framework is based on a switched system approach, and relies on a supervisory switching within a family of pre-computed candidate controllers without individual fault detection and isolation schemes. Each fault set can be accommodated either by one candidate controller or by a set of controllers under an appropriate switching law. Two aircraft examples are...

Systematic fault tolerant control based on adaptive Thau observer estimation for quadrotor UAVs

Zhaohui Cen, Hassan Noura, Younes Al Younes (2015)

International Journal of Applied Mathematics and Computer Science

A systematic fault tolerant control (FTC) scheme based on fault estimation for a quadrotor actuator, which integrates normal control, active and passive FTC and fault parking is proposed in this paper. Firstly, an adaptive Thau observer (ATO) is presented to estimate the quadrotor rotor fault magnitudes, and then faults with different magnitudes and time-varying natures are rated into corresponding fault severity levels based on the pre-defined fault-tolerant boundaries. Secondly, a systematic FTC...

Currently displaying 1 – 9 of 9

Page 1