Page 1

Displaying 1 – 10 of 10

Showing per page

Derivation of effective transfer function models by input, output variables selection

Nicos Karcanias, Konstantinos G. Vafiadis (2002)

Kybernetika

Transfer function models used for early stages of design are large dimension models containing all possible physical inputs, outputs. Such models may be badly conditioned and possibly degenerate. The problem considered here is the selection of maximal cardinality subsets of the physical input, output sets, such as the resulting model is nondegenerate and satisfies additional properties such as controllability and observability and avoids the existence of high order infinite zeros. This problem is...

Design of predictive LQ controller

Miroslav Fikar, Sebastian Engell, Petr Dostál (1999)

Kybernetika

A single variable controller is developed in the predictive control framework based upon minimisation of the LQ criterion with infinite output and control horizons. The infinite version of the predictive cost function results in better stability properties of the controller and still enables to incorporate constraints into the control design. The constrained controller consists of two parts: time-invariant nominal LQ controller and time-variant part given by Youla–Kučera parametrisation of all stabilising...

Detection and accommodation of second order distributed parameter systems with abrupt changes in input term: Existence and approximation

Michael A. Demetriou, Azmy S. Ackleh, Simeon Reich (2000)

Kybernetika

The purpose of this note is to investigate the existence of solutions to a class of second order distributed parameter systems with sudden changes in the input term. The class of distributed parameter systems under study is often encountered in flexible structures and structure-fluid interaction systems that use smart actuators. A failure in the actuator is modeled as either an abrupt or an incipient change of the actuator map whose magnitude is a function of the measurable output. A Galerkin-based...

Discrete-time symmetric polynomial equations with complex coefficients

Didier Henrion, Jan Ježek, Michael Šebek (2002)

Kybernetika

Discrete-time symmetric polynomial equations with complex coefficients are studied in the scalar and matrix case. New theoretical results are derived and several algorithms are proposed and evaluated. Polynomial reduction algorithms are first described to study theoretical properties of the equations. Sylvester matrix algorithms are then developed to solve numerically the equations. The algorithms are implemented in the Polynomial Toolbox for Matlab.

Discretization schemes for Lyapunov-Krasovskii functionals in time-delay systems

Keqin Gu (2001)

Kybernetika

This article gives an overview of discretized Lyapunov functional methods for time-delay systems. Quadratic Lyapunov–Krasovskii functionals are discretized by choosing the kernel to be piecewise linear. As a result, the stability conditions may be written in the form of linear matrix inequalities. Conservatism may be reduced by choosing a finer mesh. Simplification techniques, including elimination of variables and using integral inequalities are also discussed. Systems with multiple delays and...

Currently displaying 1 – 10 of 10

Page 1