Previous Page 3

Displaying 41 – 43 of 43

Showing per page

Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method

Abdoua Tchousso, Thibaut Besson, Cheng-Zhong Xu (2008)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study asymptotic behaviour of distributed parameter systems governed by partial differential equations (abbreviated to PDE). We first review some recently developed results on the stability analysis of PDE systems by Lyapunov's second method. On constructing Lyapunov functionals we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE systems. Then we apply the result to establish exponential stability of various chemical engineering processes...

Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks*

Zhong-Jie Han, Gen-Qi Xu (2011)

ESAIM: Control, Optimisation and Calculus of Variations


In this paper, the stability of a Timoshenko beam with time delays in the boundary input is studied. The system is fixed at the left end, and at the other end there are feedback controllers, in which time delays exist. We prove that this closed loop system is well-posed. By the complete spectral analysis, we show that there is a sequence of eigenvectors and generalized eigenvectors of the system operator that forms a Riesz basis for the state Hilbert space. Hence the system satisfies the spectrum...

Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks*

Zhong-Jie Han, Gen-Qi Xu (2011)

ESAIM: Control, Optimisation and Calculus of Variations


In this paper, the stability of a Timoshenko beam with time delays in the boundary input is studied. The system is fixed at the left end, and at the other end there are feedback controllers, in which time delays exist. We prove that this closed loop system is well-posed. By the complete spectral analysis, we show that there is a sequence of eigenvectors and generalized eigenvectors of the system operator that forms a Riesz basis for the state Hilbert space. Hence the system satisfies the spectrum...

Currently displaying 41 – 43 of 43

Previous Page 3