Displaying 2001 – 2020 of 2294

Showing per page

Structurally stable design of output regulation for a class of nonlinear systems

Celia Villanueva-Novelo, Sergej Čelikovský, Bernardino Castillo-Toledo (2001)

Kybernetika

The problem of output regulation of the systems affected by unknown constant parameters is considered here. The main goal is to find a unique feedback compensator (independent on the actual values of unknown parameters) that drives a given error (control criterion) asymptotically to zero for all values of parameters from a certain neighbourhood of their nominal value. Such a task is usually referred to as the structurally stable output regulation problem. Under certain assumptions, such a problem...

Structured redundancy for fault tolerance in state-space models and Petri nets

Christoforos N. Hadjicostis, George C. Verghese (1999)

Kybernetika

The design and implementation of systems in state form has traditionally focused on minimal representations which require the least number of state variables. However, “structured redundancy” – redundancy that has been intentionally introduced in some systematic way – can be extremely important when fault tolerance is desired. The redundancy can be used to detect and correct errors or to guarantee desirable performance despite hardware or computational failures. Modular redundancy, the traditional...

Sturm-Liouville systems are Riesz-spectral systems

Cédric Delattre, Denis Dochain, Joseph Winkin (2003)

International Journal of Applied Mathematics and Computer Science

The class of Sturm-Liouville systems is defined. It appears to be a subclass of Riesz-spectral systems, since it is shown that the negative of a Sturm-Liouville operator is a Riesz-spectral operator on L^2(a,b) and the infinitesimal generator of a C_0-semigroup of bounded linear operators.

Suboptimal fault tolerant control design with the use of discrete optimization

Zdzisław Kowalczuk, Krzysztof E. Oliński (2008)

International Journal of Applied Mathematics and Computer Science

This paper presents a concept of designing fault tolerant control systems with the use of suboptimal methods. We assume that a given (nonlinear) dynamical process is described in a state space. The method consists in searching (at the off-line stage) for a trajectory of operational points of the system state space. The sought trajectory can be constrained by certain conditions, which can express faults or failures already detected. Within this approach, we are able to use the autonomous dynamics...

Sufficient optimality conditions for multivariable control problems

Andrzej Nowakowski (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We study optimal control problems for partial differential equations (focusing on the multidimensional differential equation) with control functions in the Dirichlet boundary conditions under pointwise control (and we admit state - by assuming weak hypotheses) constraints.

Supervisory controller design for timed-place Petri nets

Aydin Aybar, Altuğ İftar (2012)

Kybernetika

Supervisory controller design to avoid deadlock in discrete-event systems modeled by timed-place Petri nets (TPPNs) is considered. The recently introduced approach of place-stretching is utilized for this purpose. In this approach, given an original TPPN (OPN), a new TPPN, called the place-stretched Petri net (PSPN), is obtained. The PSPN has the property that its marking vector is sufficient to represent its state. By using this property, a supervisory controller design approach for TPPNs to avoid...

Supervisory fault tolerant control of the GTM UAV using LPV methods

Tamás Péni, Báltin Vanek, Zoltán Szabó, József Bakor (2015)

International Journal of Applied Mathematics and Computer Science

A multi-level reconfiguration framework is proposed for fault tolerant control of over-actuated aerial vehicles, where the levels indicate how much authority is given to the reconfiguration task. On the lowest, first level the fault is accommodated by modifying only the actuator/sensor configuration, so the fault remains hidden from the baseline controller. A dynamic reallocation scheme is applied on this level. The allocation mechanism exploits the actuator/sensor redundancy available on the aircraft....

Supervisory fault tolerant control with integrated fault detection and isolation: A switched system approach

Hao Yang, Bin Jiang, Vincent Cocquempot, Lingli Lu (2012)

International Journal of Applied Mathematics and Computer Science

This paper focuses on supervisory fault tolerant control design for a class of systems with faults ranging over a finite cover. The proposed framework is based on a switched system approach, and relies on a supervisory switching within a family of pre-computed candidate controllers without individual fault detection and isolation schemes. Each fault set can be accommodated either by one candidate controller or by a set of controllers under an appropriate switching law. Two aircraft examples are...

Supervisory predictive control and on-line set-point optimization

Piotr Tatjewski (2010)

International Journal of Applied Mathematics and Computer Science

The subject of this paper is to discuss selected effective known and novel structures for advanced process control and optimization. The role and techniques of model-based predictive control (MPC) in a supervisory (advanced) control layer are first shortly discussed. The emphasis is put on algorithm efficiency for nonlinear processes and on treating uncertainty in process models, with two solutions presented: the structure of nonlinear prediction and successive linearizations for nonlinear control,...

Supporting locomotive functions of a six-legged walking robot

Krzysztof Walas, Dominik Belter (2011)

International Journal of Applied Mathematics and Computer Science

This paper presents a method for building a foothold selection module as well as methods for the stability check for a multi-legged walking robot. The foothold selection decision maker is shaped automatically, without expert knowledge. The robot learns how to select appropriate footholds by walking on rough terrain or by testing ground primitives. The gathered knowledge is then used to find a relation between slippages and the obtained local shape of the terrain, which is further employed to assess...

Currently displaying 2001 – 2020 of 2294