Stability of stochastic functional differential equations and the W-transform.
We consider a tank containing a fluid. The tank is subjected to a one-dimensional horizontal move and the motion of the fluid is described by the shallow water equations. By means of a Lyapunov approach, we deduce control laws to stabilize the fluid's state and the tank's position. Although global asymptotic stability is yet to be proved, we numerically simulate the system and observe the stabilization for different control situations.
We introduce a model of a vibrating multidimensional structure made of a n-dimensional body and a one-dimensional rod. We actually consider the anisotropic elastodynamic system in the n-dimensional body and the Euler-Bernouilli beam in the one-dimensional rod. These equations are coupled via their boundaries. Using appropriate feedbacks on a part of the boundary we show the exponential decay of the energy of the system.
For a hybrid system composed of a cable with masses at both ends, we prove the existence of solutions for a class of nonlinear and nonmonotone feedback laws by means of a priori estimates. Assuming some local monotonicity, strong stabilization is obtained thanks to some Riemann's invariants technique and La Salle's principle.
This paper analyzes the BIBO stability of fractional exponential delay systems which are of retarded or neutral type. Conditions ensuring stability are given first. As is the case for the classical class of delay systems these conditions can be expressed in terms of the location of the poles of the system. Then, in view of constructing robust BIBO stabilizing controllers, explicit expressions of coprime and Bézout factors of these systems are determined. Moreover, nuclearity is analyzed in a particular...
In this paper we give sufficient conditions under which a nonlinear stochastic differential system without unforced dynamics is globally asymptotically stabilizable in probability via time-varying smooth feedback laws. The technique developed to design explicitly the time-varying stabilizers is based on the stochastic Lyapunov technique combined with the strategy used to construct bounded smooth stabilizing feedback laws for passive nonlinear stochastic differential systems. The interest of this...
In this paper we give sufficient conditions under which a nonlinear stochastic differential system without unforced dynamics is globally asymptotically stabilizable in probability via time-varying smooth feedback laws. The technique developed to design explicitly the time-varying stabilizers is based on the stochastic Lyapunov technique combined with the strategy used to construct bounded smooth stabilizing feedback laws for passive nonlinear stochastic differential systems. The interest of this...