Page 1

Displaying 1 – 7 of 7

Showing per page

Realization theory methods for the stability investigation of nonlinear infinite-dimensional input-output systems

Volker Reitmann (2011)

Mathematica Bohemica

Realization theory for linear input-output operators and frequency-domain methods for the solvability of Riccati operator equations are used for the stability and instability investigation of a class of nonlinear Volterra integral equations in a Hilbert space. The key idea is to consider, similar to the Volterra equation, a time-invariant control system generated by an abstract ODE in a weighted Sobolev space, which has the same stability properties as the Volterra equation.

Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum

Muhammad Idrees, Shah Muhammad, Saif Ullah (2019)

Kybernetika

The rotary inverted pendulum (RIP) system is one of the fundamental, nonlinear, unstable and interesting benchmark systems in the field of control theory. In this paper, two nonlinear control strategies, namely hierarchical sliding mode control (HSMC) and decoupled sliding mode control (DSMC), are discussed to address the stabilization problem of the RIP system. We introduced HSMC with state-dependent switching gain for stabilization of the RIP system. Numerical simulations are performed to analyze...

Currently displaying 1 – 7 of 7

Page 1