New approach to asymptotic stability: Time-varying nonlinear systems.
A qualitative method is explored for analyzing the stability of systems. The approach is a generalization of the celebrated Lyapunov method. Whereas classically, the Lyapunov method is based on the simple comparison theorem, deriving suitable candidate Lyapunov functions remains mostly an art. As a result, in the realm of delay equations, such Lyapunov methods can be quite conservative. The generalization is here in using the comparison theorem directly with a different scalar equation with known...
This paper deals with nonlinear feedback stabilization problem of a flexible beam clamped at a rigid body and free at the other end. We assume that there is no damping and the feedback law proposed here consists of a nonlinear control torque applied to the rigid body and either a boundary control moment or a nonlinear boundary control force or both of them applied to the free end of the beam. This nonlinear feedback, which insures the exponential decay of the beam vibrations, extends the linear...
This paper improves controller synthesis of discrete Takagi-Sugeno fuzzy systems based on non-quadratic Lyapunov functions, making it possible to accomplish various kinds of control performance specifications such as decay rate conditions, requirements on control input and output and disturbance rejection. These extensions can be implemented via linear matrix inequalities, which are numerically solvable with commercially available software. The controller design is illustrated with an example.
In this paper we present a solution to the decoupling problem with stability of linear multivariable systems with 2 outputs, using nonregular static state feedback. The problem is tackled using an algebraic-polynomial approach, and the main idea is to test the conditions for a decoupling compensator with stability to be feedback realizable. It is shown that the problem has a solution if and only if Morse’s list is greater than or equal to the infinite and unstable structure of the proper and stable...