Previous Page 3

Displaying 41 – 52 of 52

Showing per page

On timed event graph stabilization by output feedback in dioid

B. Cottenceau, Mehdi Lhommeau, Laurent Hardouin, Jean-Louis Boimond (2003)

Kybernetika

This paper deals with output feedback synthesis for Timed Event Graphs (TEG) in dioid algebra. The feedback synthesis is done in order to (1) stabilize a TEG without decreasing its original production rate, (2) optimize the initial marking of the feedback, (3) delay as much as possible the tokens input.

Optimal multivariable PID regulator

Jiří Mošna, Pavel Pešek (2000)

Kybernetika

A continuous version of optimal LQG design under presence of Wiener disturbances is solved for MIMO controlled plant. Traditional design tools fail to solve this problem due to unstability of the augmented plant. A class of all optimality criteria, which guarantee existence of an asymptotical solution, is defined using a plant deviation model. This class is utilized in design of an optimal state and an error feedback regulator which is presented here. The resultant optimal error regulator is interpreted...

Optimization problems for structural acoustic models with thermoelasticity and smart materials

Irena Lasiecka (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Optimization problem for a structural acoustic model with controls governed by unbounded operators on the state space is considered. This type of controls arises naturally in the context of "smart material technology". The main result of the paper provides an optimal synthesis and solvability of associated nonstandard Riccati equations. It is shown that in spite of the unboundedness of control operators, the resulting gain operators (feedbacks) are bounded on the state space. This allows to provide...

Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation

Bao-Zhu Guo, Cheng-Zhong Xu, Hassan Hammouri (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small time delay there exists in observation. In this paper, we are concerned with a particularly interesting case: Boundary output feedback stabilization of a one-dimensional wave equation system for which the...

Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation∗

Bao-Zhu Guo, Cheng-Zhong Xu, Hassan Hammouri (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small time delay there exists in observation. In this paper, we are concerned with a particularly interesting case: Boundary output feedback stabilization of a...

Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation∗

Bao-Zhu Guo, Cheng-Zhong Xu, Hassan Hammouri (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small time delay there exists in observation. In this paper, we are concerned with a particularly interesting case: Boundary output feedback stabilization of a...

Output stabilization for infinite-dimensional bilinear systems

El Zerrik, Mohamed Ouzahra (2005)

International Journal of Applied Mathematics and Computer Science

The purpose of this paper is to extend results on regional internal stabilization for infinite bilinear systems to the case where the subregion of interest is a part of the boundary of the system evolution domain. Then we characterize either stabilizing control on a boundary part, or the one minimizing a given cost of performance. The obtained results are illustrated with numerical examples.

Currently displaying 41 – 52 of 52

Previous Page 3