On the decentralized stabilization of interconnected discrete time systems
Let be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke’s generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov...
Let be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke's generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov...
In this paper, we consider the well-known Fattorini’s criterion for approximate controllability of infinite dimensional linear systems of type y′ = Ay + Bu. We precise the result proved by Fattorini in [H.O. Fattorini, SIAM J. Control 4 (1966) 686–694.] for bounded input B, in the case where B can be unbounded or in the case of finite-dimensional controls. More precisely, we prove that if Fattorini’s criterion is satisfied and if the set of geometric multiplicities of A is bounded then approximate...
We consider a finite-dimensional control system , such that there exists a feedback stabilizer that renders globally asymptotically stable. Moreover, for with an output map and , we assume that there exists a -function such that , where is the maximal solution of , corresponding to and to the initial condition . Then, the gain function of given byis well-defined. We call profile of for any -function which is of the same order of magnitude as . For the double integrator...
We consider a finite-dimensional control system , such that there exists a feedback stabilizer k that renders globally asymptotically stable. Moreover, for (H,p,q) with H an output map and , we assume that there exists a -function α such that , where xu is the maximal solution of , corresponding to u and to the initial condition x(0)=0. Then, the gain function of (H,p,q) given by 14.5cm is well-defined. We call profile of k for (H,p,q) any -function which is of the same order of...
We obtain a precise decay estimate of the energy of the solutions to the initial boundary value problem for the wave equation with nonlinear internal and boundary feedbacks. We show that a judicious choice of the feedbacks leads to fast energy decay.
This paper deals with the local (around the equilibrium) optimal decentralized control of autonomous multivariable systems of nonlinearities and couplings between subsystems which can be expressed as power series in the state-space are allowed in the formulation. They only affect for the optimal performance integrals in cubic and higher terms in the norm of the initial conditions of the dynamical differential system. The basic hypothesis which is made is that the system is centrally-stabilizable...
This paper establishes the equivalence between systems described by a single first-order hyperbolic partial differential equation and systems described by integral delay equations. System-theoretic results are provided for both classes of systems (among them converse Lyapunov results). The proposed framework can allow the study of discontinuous solutions for nonlinear systems described by a single first-order hyperbolic partial differential equation under the effect of measurable inputs acting on...
This paper deals with a multiobjective control problem for nonlinear discrete time systems. The problem consists of finding a control strategy which minimizes a number of performance indexes subject to state and control constraints. A solution to this problem through the Receding Horizon approach is proposed. Under standard assumptions, it is shown that the resulting control law guarantees closed-loop stability. The proposed method is also used to provide a robustly stabilizing solution to the problem...
We construct explicitly an homogeneous feedback for a class of single input, two dimensional and homogeneous systems.
We construct explicitly an homogeneous feedback for a class of single input, two dimensional and homogeneous systems.
In this paper, we consider some classes of bilinear systems. We give sufficient condition for the asymptotic stabilization by using a positive and a negative feedbacks.
Of concern in this paper is the laminated beam system with frictional damping and an internal constant delay term in the transverse displacement. Under suitable assumptions on the weight of the delay, we establish that the system's energy decays exponentially in the case of equal wave speeds of propagation, and polynomially in the case of non-equal wave speeds.
Let be a smooth connected complete manifold of dimension , and be a smooth nonholonomic distribution of rank on . We prove that if there exists a smooth Riemannian metric on1for which no nontrivial singular path is minimizing, then there exists a smooth repulsive stabilizing section of on . Moreover, in dimension three, the assumption of the absence of singular minimizing horizontal paths can be dropped in the Martinet case. The proofs are based on the study, using specific results of...
In this paper, the static output feedback stabilization (SOFS) of deterministic finite automata (DFA) via the semi-tensor product (STP) of matrices is investigated. Firstly, the matrix expression of Moore-type automata is presented by using STP. Here the concept of the set of output feedback feasible events (OFFE) is introduced and expressed in the vector form, and the stabilization of DFA is defined in the sense of static output feedback (SOF) control. Secondly, SOFS problem of DFA is investigated...