About integrity in security models.
We derive absolute stability results for well-posed infinite-dimensional systems which, in a sense, extend the well-known circle criterion to the case that the underlying linear system is the series interconnection of an exponentially stable well-posed infinite-dimensional system and an integrator and the nonlinearity ϕ satisfies a sector condition of the form (ϕ(u),ϕ(u) - au) ≤ 0 for some constant a>0. These results are used to prove convergence and stability properties of low-gain integral...
In this paper, the finite-time stabilization problem of chained form systems with parametric uncertainties is investigated. A novel switching control strategy is proposed for adaptive finite-time control design with the help of Lyapunov-based method and time-rescaling technique. With the proposed control law, the uncertain closed-loop system under consideration is finite-time stable within a given settling time. An illustrative example is also given to show the effectiveness of the proposed controller....
In this paper, the problem of adaptive output feedback stabilization is investigated for a class of nonlinear systems with sensor uncertainty in measured output and a growth rate of polynomial-of-output multiplying an unknown constant in the nonlinear terms. By developing a dual-domination approach, an adaptive observer and an output feedback controller are designed to stabilize the nonlinear system by directly utilizing the measured output with uncertainty. Besides, two types of extension are made...
The adaptive stabilization is investigated for a class of coupled PDE-ODE systems with multiple uncertainties. The presence of the multiple uncertainties and the interaction between the sub-systems makes the systems to be considered more general and representative, and moreover it may result in the ineffectiveness of the conventional methods on this topic. Motivated by the existing literature, an infinite-dimensional backsteppping transformation with new kernel functions is first introduced to change...
This paper deals with the stabilization of the linear time-invariant finite dimensional control problem specified by the following linear spaces and subspaces on C: χ (state space) = χ* ⊕ χd, U (input space) = U1 ⊕ U2, Y (output space) = Y1 + Y2, together with the linear mappings: Qs = χ x U x [0,t} --> χ associated with the evolution equation of the C0-semigroup S(t) generated by the matrices, of real and complex entries A belonging to L(χ,χ) and B belonging to L(U,χ) of a given differential...
We compare a general controlled diffusion process with a deterministic system where a second controller drives the disturbance against the first controller. We show that the two models are equivalent with respect to two properties: the viability (or controlled invariance, or weak invariance) of closed smooth sets, and the existence of a smooth control Lyapunov function ensuring the stabilizability of the system at an equilibrium.
This paper deals with two important practical problems in motion control of robot manipulators: the measurement of joint velocities, which often results in noisy signals, and the uncertainty of parameters of the dynamic model. Adaptive output feedback controllers have been proposed in the literature in order to deal with these problems. In this paper, we prove for the first time that Uniform Global Asymptotic Stability (UGAS) can be obtained from an adaptive output feedback tracking controller,...