Displaying 21 – 40 of 49

Showing per page

Constrained portfolio liquidation in a limit order book model

Aurélien Alfonsi, Antje Fruth, Alexander Schied (2008)

Banach Center Publications

We consider the problem of optimally placing market orders so as to minimize the expected liquidity costs from buying a given amount of shares. The liquidity price impact of market orders is described by an extension of a model for a limit order book with resilience that was proposed by Obizhaeva and Wang (2006). We extend their model by allowing for a time-dependent resilience rate, arbitrary trading times, and general equilibrium dynamics for the unaffected bid and ask prices. Our main results...

Constrained robust adaptive stabilization for a class of lower triangular systems with unknown control direction

Jianglin Lan, Weijie Sun, Yunjian Peng (2014)

Kybernetika

This paper studies the constrained robust adaptive stabilization problem for a class of lower triangular systems with unknown control direction. A robust adaptive feedback control law for the systems is proposed by incorporating the technique of Barrier Lyapunov Function with Nussbaum gain. Such a controlled system arises from the study of the constrained robust output regulation problem for a class of output feedback systems with the unknown control direction and a nonlinear exosystem. An application...

Continuity of solutions of Riccati equations for the discrete-time JLQP

Adam Czornik, Andrzej Świerniak (2002)

International Journal of Applied Mathematics and Computer Science

The continuity of the solutions of difference and algebraic coupled Riccati equations for the discrete-time Markovian jump linear quadratic control problem as a function of coefficients is verified. The line of reasoning goes through the use of the minimum property formulated analogously to the one for coupled continuous Riccati equations presented by Wonham and a set of comparison theorems.

Continuous feedback stabilization for a class of affine stochastic nonlinear systems

Mohamed Oumoun, Lahcen Maniar, Abdelghafour Atlas (2020)

Kybernetika

We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods...

Control of a class of chaotic systems by a stochastic delay method

Lan Zhang, Cheng Jian Zhang, Dongming Zhao (2010)

Kybernetika

A delay stochastic method is introduced to control a certain class of chaotic systems. With the Lyapunov method, a suitable kind of controllers with multiplicative noise is designed to stabilize the chaotic state to the equilibrium point. The method is simple and can be put into practice. Numerical simulations are provided to illustrate the effectiveness of the proposed controllable conditions.

Control of linear systems with rational expectations. The case of incomplete information.

Emilio Cerdá Tena (1992)

Trabajos de Investigación Operativa

The problem of optimal control of linear economic systems with rational expectations and quadratic objective function is solved for the case of incomplete information. The case of complete information has been previously studied. In both problems the hypothesis of causality is not satisfied and, therefore, the standard techniques of control theory cannot be directly applied, though the method used is based on these techniques.

Controllability of nonlinear impulsive Ito type stochastic systems

Rathinasamy Sakthivel (2009)

International Journal of Applied Mathematics and Computer Science

In this article, we consider finite dimensional dynamical control systems described by nonlinear impulsive Ito type stochastic integrodifferential equations. Necessary and sufficient conditions for complete controllability of nonlinear impulsive stochastic systems are formulated and proved under the natural assumption that the corresponding linear system is appropriately controllable. A fixed point approach is employed for achieving the required result.

Controllability of nonlinear stochastic systems with multiple time-varying delays in control

Shanmugasundaram Karthikeyan, Krishnan Balachandran, Murugesan Sathya (2015)

International Journal of Applied Mathematics and Computer Science

This paper is concerned with the problem of controllability of semi-linear stochastic systems with time varying multiple delays in control in finite dimensional spaces. Sufficient conditions are established for the relative controllability of semilinear stochastic systems by using the Banach fixed point theorem. A numerical example is given to illustrate the application of the theoretical results. Some important comments are also presented on existing results for the stochastic controllability of...

Controllability of semilinear stochastic integrodifferential systems

Krishnan Balachandran, S. Karthikeyan, Jeong-Hoon Kim (2007)

Kybernetika

In this paper we study the approximate and complete controllability of stochastic integrodifferential system in finite dimensional spaces. Sufficient conditions are established for each of these types of controllability. The results are obtained by using the Picard iteration technique.

Currently displaying 21 – 40 of 49