Approximation and optimality necessary conditions in relaxed stochastic control problems.
The paper deals with a class of discrete-time stochastic control processes under a discounted optimality criterion with random discount rate, and possibly unbounded costs. The state process and the discount process evolve according to the coupled difference equations
A nonlinear filtering problem with delays in the state and observation equations is considered. The unnormalized conditional probability density of the filtered diffusion process satisfies the so-called Zakai equation and solves the nonlinear filtering problem. We examine the solution of the Zakai equation using an approximation result. Our theoretical deliberations are illustrated by a numerical example.
The problem of asymmetry appears in various aspects of time series modelling. Typical examples are asymmetric time series, asymmetric error distributions and asymmetric loss functions in estimating and predicting. The paper deals with asymmetric modifications of some recursive time series methods including Kalman filtering, exponential smoothing and recursive treatment of Box-Jenkins models.
We study the limit behavior of certain classes of dependent random sequences (processes) which do not possess the Markov property. Assuming these processes depend on a control parameter we show that the optimization of the control can be reduced to a problem of nonlinear optimization. Under certain hypotheses we establish the stability of such optimization problems.
Asymptotic stability of the zero solution for stochastic jump parameter systems of differential equations given by , where is a finite-valued Markov process and w(t) is a standard Wiener process, is considered. It is proved that the existence of a unique positive solution of the system of coupled Lyapunov matrix equations derived in the paper is a necessary asymptotic stability condition.
In this paper, the filtering problem is revisited in the basic Gaussian homogeneous linear system driven by fractional Brownian motions. We exhibit a simple approximate filter which is asymptotically optimal in the sense that, when the observation time tends to infinity, the variance of the corresponding filtering error converges to the same limit as for the exact optimal filter.
We study the asymptotical behaviour of expected utility from terminal wealth on a market in which asset prices depend on economic factors that are unobserved or observed with delay.
The problem of state estimation of a continuous-time stochastic process using an Asynchronous Distributed multi-sensor Estimation (ADE) system is considered. The state of a process of interest is estimated by a group of local estimators constituting the proposed ADE system. Each estimator is based, e.g., on a Kalman filter and performs single sensor filtration and fusion of its local results with the results from other/remote processors to compute possibly the best state estimates. In performing...
A nonlinear discrete-time control system forced by stochastic disturbances is considered. We study the problem of synthesis of the regulator which stabilizes an equilibrium of the deterministic system and provides required scattering of random states near this equilibrium for the corresponding stochastic system. Our approach is based on the stochastic sensitivity functions technique. The necessary and important part of the examined control problem is an analysis of attainability. For 2D systems,...
In this paper, an angular tracking control based on adaptive super twisting algorithm (ASTA) for a Twin Rotor System is presented. With the aim of implementing the ASTA control and taking into consideration the difficulties of measuring some of its states, a Nonlinear Extended State Observer (NESO) is employed to estimate the vector state and furthermore unmeasured dynamics. This scheme increases robustness against unmodeled dynamics and external disturbance, reducing modeling difficulties due to...