Some decompositions of Bernoulli sets and codes
A decomposition of a set of words over a -letter alphabet is any sequence of subsets of such that the sets , are pairwise disjoint, their union is , and for all , , , where denotes the commutative equivalence relation. We introduce some suitable decompositions that we call good, admissible, and normal. A normal decomposition is admissible and an admissible decomposition is good. We prove that a set is commutatively prefix if and only if it has a normal decomposition. In particular,...