Displaying 281 – 300 of 425

Showing per page

The uniqueness of Haar measure and set theory

Piotr Zakrzewski (1997)

Colloquium Mathematicae

Let G be a group of homeomorphisms of a nondiscrete, locally compact, σ-compact topological space X and suppose that a Haar measure on X exists: a regular Borel measure μ, positive on nonempty open sets, finite on compact sets and invariant under the homeomorphisms from G. Under some mild assumptions on G and X we prove that the measure completion of μ is the unique, up to a constant factor, nonzero, σ-finite, G-invariant measure defined on its domain iff μ is ergodic and the G-orbits of all points...

The weak extension property and finite axiomatizability for quasivarieties

Wiesław Dziobiak, Miklós Maróti, Ralph McKenzie, Anvar Nurakunov (2009)

Fundamenta Mathematicae

We define and compare a selection of congruence properties of quasivarieties, including the relative congruence meet semi-distributivity, RSD(∧), and the weak extension property, WEP. We prove that if 𝒦 ⊆ ℒ ⊆ ℒ' are quasivarieties of finite signature, and ℒ' is finitely generated while 𝒦 ⊨ WEP, then 𝒦 is finitely axiomatizable relative to ℒ. We prove for any quasivariety 𝒦 that 𝒦 ⊨ RSD(∧) iff 𝒦 has pseudo-complemented congruence lattices and 𝒦 ⊨ WEP. Applying these results and other results...

The μ-calculus alternation-depth hierarchy is strict on binary trees

André Arnold (2010)

RAIRO - Theoretical Informatics and Applications

In this paper we give a simple proof that the alternation-depth hierarchy of the μ-calculus for binary trees is strict. The witnesses for this strictness are the automata that determine whether there is a winning strategy for the parity game played on a tree.

The Σ* approach to the fine structure of L

Sy Friedman (1997)

Fundamenta Mathematicae

We present a reformulation of the fine structure theory from Jensen [72] based on his Σ* theory for K and introduce the Fine Structure Principle, which captures its essential content. We use this theory to prove the Square and Fine Scale Principles, and to construct Morasses.

The σ -property in C ( X )

Anthony W. Hager (2016)

Commentationes Mathematicae Universitatis Carolinae

The σ -property of a Riesz space (real vector lattice) B is: For each sequence { b n } of positive elements of B , there is a sequence { λ n } of positive reals, and b B , with λ n b n b for each n . This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when “ σ ” obtains for a Riesz space of continuous real-valued functions C ( X ) . A basic result is: For discrete X , C ( X ) has σ iff the cardinal | X | < 𝔟 , Rothberger’s bounding number. Consequences and...

The σ-complete MV-algebras which have enough states

Antonio Di Nola, Mirko Navara (2005)

Colloquium Mathematicae

We characterize Łukasiewicz tribes, i.e., collections of fuzzy sets that are closed under the standard fuzzy complementation and the Łukasiewicz t-norm with countably many arguments. As a tool, we introduce σ-McNaughton functions as the closure of McNaughton functions under countable MV-algebraic operations. We give a measure-theoretical characterization of σ-complete MV-algebras which are isomorphic to Łukasiewicz tribes.

The σ-ideal of closed smooth sets does not have the covering property

Carlos Uzcátegui (1996)

Fundamenta Mathematicae

We prove that the σ-ideal I(E) (of closed smooth sets with respect to a non-smooth Borel equivalence relation E) does not have the covering property. In fact, the same holds for any σ-ideal containing the closed transversals with respect to an equivalence relation generated by a countable group of homeomorphisms. As a consequence we show that I(E) does not have a Borel basis.

Currently displaying 281 – 300 of 425