The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study translations of dyadic first-order sentences into equalities between relational expressions. The proposed translation techniques (which work also in the converse direction) exploit a graphical representation of formulae in a hybrid of the two formalisms. A major enhancement relative to previous work is that we can cope with the relational complement construct and with the negation connective. Complementation is handled by adopting a Smullyan-like uniform notation to classify and decompose...
We study translations of dyadic first-order sentences into equalities between relational
expressions. The proposed translation techniques (which work also in the converse
direction) exploit a graphical representation of formulae in a hybrid of the two
formalisms. A major enhancement relative to previous work is that we can cope with the
relational complement construct and with the negation connective. Complementation is
handled by adopting a Smullyan-like...
We present a new prover for propositional 3-valued logics, TAS-M3, which is an extension of the TAS-D prover for classical propositional logic. TAS-M3 uses the TAS methodology and, consequently, it is a reduction-based method. Thus, its power is based on the reductions of the size of the formula executed by the F transformation. This transformation dynamically filters the information contained in the syntactic structure of the formula to avoid as much distributions as possible, in order to improve...
Educational content for abstract reduction systems concerning reduction, convertibility, normal forms, divergence and convergence, Church- Rosser property, term rewriting systems, and the idea of the Knuth-Bendix Completion Algorithm. The theory is based on [1].
In this article we formalize negligible functions that play an essential role in cryptology [10], [2]. Generally, a cryptosystem is secure if the probability of succeeding any attacks against the cryptosystem is negligible. First, we formalize the algebra of polynomially bounded sequences [20]. Next, we formalize negligible functions and prove the set of negligible functions is a subset of the algebra of polynomially bounded sequences. Moreover, we then introduce equivalence relation between polynomially...
We introduce algorithmic logic - an algebraic approach according to [25]. It is done in three stages: propositional calculus, quantifier calculus with equality, and finally proper algorithmic logic. For each stage appropriate signature and theory are defined. Propositional calculus and quantifier calculus with equality are explored according to [24]. A language is introduced with language signature including free variables, substitution, and equality. Algorithmic logic requires a bialgebra structure...
This article provides definitions and examples upon an integral element of unital commutative rings. An algebraic number is also treated as consequence of a concept of “integral”. Definitions for an integral closure, an algebraic integer and a transcendental numbers [14], [1], [10] and [7] are included as well. As an application of an algebraic number, this article includes a formal proof of a ring extension of rational number field ℚ induced by substitution of an algebraic number to the polynomial...
In this Mizar article, we complete the formalization of one of the items from Abad and Abad’s challenge list of “Top 100 Theorems” about Liouville numbers and the existence of transcendental numbers. It is item #18 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/. Liouville numbers were introduced by Joseph Liouville in 1844 [15] as an example of an object which can be approximated “quite closely” by a sequence of rational numbers. A real...
We introduce the altitudes of a triangle (the cevians perpendicular to the opposite sides). Using the generalized Ceva’s Theorem, we prove the existence and uniqueness of the orthocenter of a triangle [7]. Finally, we formalize in Mizar [1] some formulas [2] to calculate distance using triangulation.
In this article, we considered bidual spaces and reflexivity of real normed spaces. At first we proved some corollaries applying Hahn-Banach theorem and showed related theorems. In the second section, we proved the norm of dual spaces and defined the natural mapping, from real normed spaces to bidual spaces. We also proved some properties of this mapping. Next, we defined real normed space of R, real number spaces as real normed spaces and proved related theorems. We can regard linear functionals...
Rough sets, developed by Zdzisław Pawlak [12], are an important tool to describe the state of incomplete or partially unknown information. In this article, which is essentially the continuation of [8], we try to give the characterization of approximation operators in terms of ordinary properties of underlying relations (some of them, as serial and mediate relations, were not available in the Mizar Mathematical Library [11]). Here we drop the classical equivalence- and tolerance-based models of rough...
In this article we focus on a special case of the Brouwer invariance of domain theorem. Let us A, B be a subsets of εn, and f : A → B be a homeomorphic. We prove that, if A is closed then f transform the boundary of A to the boundary of B; and if B is closed then f transform the interior of A to the interior of B. These two cases are sufficient to prove the topological invariance of dimension, which is used to prove basic properties of the n-dimensional manifolds, and also to prove basic properties...
The main purpose of this article is to introduce the categorical concept of pullback in Mizar. In the first part of this article we redefine homsets, monomorphisms, epimorpshisms and isomorphisms [7] within a free-object category [1] and it is shown there that ordinal numbers can be considered as categories. Then the pullback is introduced in terms of its universal property and the Pullback Lemma is formalized [15]. In the last part of the article we formalize the pullback of functors [14] and it...
The article formalizes the Cayley's theorem saying that every group G is isomorphic to a subgroup of the symmetric group on G.
The notion of the characteristic of rings and its basic properties are formalized [14], [39], [20]. Classification of prime fields in terms of isomorphisms with appropriate fields (ℚ or ℤ/p) are presented. To facilitate reasonings within the field of rational numbers, values of numerators and denominators of basic operations over rationals are computed.
We introduce, using the Mizar system [1], some basic concepts of Euclidean geometry: the half length and the midpoint of a segment, the perpendicular bisector of a segment, the medians (the cevians that join the vertices of a triangle to the midpoints of the opposite sides) of a triangle. We prove the existence and uniqueness of the circumcenter of a triangle (the intersection of the three perpendicular bisectors of the sides of the triangle). The extended law of sines and the formula of the radius...
In this article we prove that fundamental groups based at the unit point of topological groups are commutative [11].
Currently displaying 1 –
20 of
163