Displaying 261 – 280 of 374

Showing per page

Polynomial sequences generated by infinite Hessenberg matrices

Luis Verde-Star (2017)

Special Matrices

We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz...

Polynomial time algorithms for two classes of subgraph problem

Sriraman Sridharan (2008)

RAIRO - Operations Research

We design a O(n3) polynomial time algorithm for finding a (k-1)- regular subgraph in a k-regular graph without any induced star K1,3(claw-free). A polynomial time algorithm for finding a cubic subgraph in a 4-regular locally connected graph is also given. A family of k-regular graphs with an induced star K1,3 (k even, k ≥ 6), not containing any (k-1)-regular subgraph is also constructed.

Polynomials of multipartitional type and inverse relations

Miloud Mihoubi, Hacène Belbachir (2011)

Discussiones Mathematicae - General Algebra and Applications

Chou, Hsu and Shiue gave some applications of Faà di Bruno's formula to characterize inverse relations. Our aim is to develop some inverse relations connected to the multipartitional type polynomials involving to binomial type sequences.

Polypodic codes

Symeon Bozapalidis, Olympia Louscou-Bozapalidou (2002)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Word and tree codes are studied in a common framework, that of polypodes which are sets endowed with a substitution like operation. Many examples are given and basic properties are examined. The code decomposition theorem is valid in this general setup.

Polypodic codes

Symeon Bozapalidis, Olympia Louscou–Bozapalidou (2010)

RAIRO - Theoretical Informatics and Applications

Word and tree codes are studied in a common framework, that of polypodes which are sets endowed with a substitution like operation. Many examples are given and basic properties are examined. The code decomposition theorem is valid in this general setup.

Porous media equation on locally finite graphs

Li Ma (2022)

Archivum Mathematicum

In this paper, we consider two typical problems on a locally finite connected graph. The first one is to study the Bochner formula for the Laplacian operator on a locally finite connected graph. The other one is to obtain global nontrivial nonnegative solution to porous-media equation via the use of Aronson-Benilan argument. We use the curvature dimension condition to give a characterization two point graph. We also give a porous-media equation criterion about stochastic completeness of the graph....

Positive knots, closed braids and the Jones polynomial

Alexander Stoimenow (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Using the recent Gauß diagram formulas for Vassiliev invariants of Polyak-Viro-Fiedler and combining these formulas with the Bennequin inequality, we prove several inequalities for positive knots relating their Vassiliev invariants, genus and degrees of the Jones polynomial. As a consequence, we prove that for any of the polynomials of Alexander/Conway, Jones, HOMFLY, Brandt-Lickorish-Millett-Ho and Kauffman there are only finitely many positive knots with the same polynomial and no positive knot...

Positive Q-matrices of graphs

Nobuaki Obata (2007)

Studia Mathematica

The Q-matrix of a connected graph = (V,E) is Q = ( q ( x , y ) ) x , y V , where ∂(x,y) is the graph distance. Let q() be the range of q ∈ (-1,1) for which the Q-matrix is strictly positive. We obtain a sufficient condition for the equality q(̃) = q() where ̃ is an extension of a finite graph by joining a square. Some concrete examples are discussed.

Positivity of Schur function expansions of Thom polynomials

Piotr Pragacz, Andrzej Weber (2007)

Fundamenta Mathematicae

Combining the approach to Thom polynomials via classifying spaces of singularities with the Fulton-Lazarsfeld theory of cone classes and positive polynomials for ample vector bundles, we show that the coefficients of the Schur function expansions of the Thom polynomials of stable singularities are nonnegative with positive sum.

Positivity of Thom polynomials II: the Lagrange singularities

Małgorzata Mikosz, Piotr Pragacz, Andrzej Weber (2009)

Fundamenta Mathematicae

We study Thom polynomials associated with Lagrange singularities. We expand them in the basis of Q̃-functions. This basis plays a key role in the Schubert calculus of isotropic Grassmannians. We prove that the Q̃-function expansions of the Thom polynomials of Lagrange singularities always have nonnegative coefficients. This is an analog of a result on the Thom polynomials of mapping singularities and Schur S-functions, established formerly by the last two authors.

Potential forbidden triples implying hamiltonicity: for sufficiently large graphs

Ralph J. Faudree, Ronald J. Gould, Michael S. Jacobson (2005)

Discussiones Mathematicae Graph Theory

In [1], Brousek characterizes all triples of connected graphs, G₁,G₂,G₃, with G i = K 1 , 3 for some i = 1,2, or 3, such that all G₁G₂ G₃-free graphs contain a hamiltonian cycle. In [8], Faudree, Gould, Jacobson and Lesniak consider the problem of finding triples of graphs G₁,G₂,G₃, none of which is a K 1 , s , s ≥ 3 such that G₁G₂G₃-free graphs of sufficiently large order contain a hamiltonian cycle. In [6], a characterization was given of all triples G₁,G₂,G₃ with none being K 1 , 3 , such that all G₁G₂G₃-free graphs are...

Currently displaying 261 – 280 of 374