Displaying 501 – 520 of 1336

Showing per page

On local structure of 1-planar graphs of minimum degree 5 and girth 4

Dávid Hudák, Tomás Madaras (2009)

Discussiones Mathematicae Graph Theory

A graph is 1-planar if it can be embedded in the plane so that each edge is crossed by at most one other edge. We prove that each 1-planar graph of minimum degree 5 and girth 4 contains (1) a 5-vertex adjacent to an ≤ 6-vertex, (2) a 4-cycle whose every vertex has degree at most 9, (3) a K 1 , 4 with all vertices having degree at most 11.

On locating and differentiating-total domination in trees

Mustapha Chellali (2008)

Discussiones Mathematicae Graph Theory

A total dominating set of a graph G = (V,E) with no isolated vertex is a set S ⊆ V such that every vertex is adjacent to a vertex in S. A total dominating set S of a graph G is a locating-total dominating set if for every pair of distinct vertices u and v in V-S, N(u)∩S ≠ N(v)∩S, and S is a differentiating-total dominating set if for every pair of distinct vertices u and v in V, N[u]∩S ≠ N[v] ∩S. Let γ L ( G ) and γ D ( G ) be the minimum cardinality of a locating-total dominating set and a differentiating-total...

On locating-domination in graphs

Mustapha Chellali, Malika Mimouni, Peter J. Slater (2010)

Discussiones Mathematicae Graph Theory

A set D of vertices in a graph G = (V,E) is a locating-dominating set (LDS) if for every two vertices u,v of V-D the sets N(u)∩ D and N(v)∩ D are non-empty and different. The locating-domination number γ L ( G ) is the minimum cardinality of a LDS of G, and the upper locating-domination number, Γ L ( G ) is the maximum cardinality of a minimal LDS of G. We present different bounds on Γ L ( G ) and γ L ( G ) .

On Longest Cycles in Essentially 4-Connected Planar Graphs

Igor Fabrici, Jochen Harant, Stanislav Jendroľ (2016)

Discussiones Mathematicae Graph Theory

A planar 3-connected graph G is essentially 4-connected if, for any 3-separator S of G, one component of the graph obtained from G by removing S is a single vertex. Jackson and Wormald proved that an essentially 4-connected planar graph on n vertices contains a cycle C such that [...] . For a cubic essentially 4-connected planar graph G, Grünbaum with Malkevitch, and Zhang showed that G has a cycle on at least ¾ n vertices. In the present paper the result of Jackson and Wormald is improved. Moreover,...

On magic and supermagic line graphs

Jaroslav Ivančo, Z. Lastivková, A. Semaničová (2004)

Mathematica Bohemica

A graph is called magic (supermagic) if it admits a labelling of the edges by pairwise different (consecutive) positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. We characterize magic line graphs of general graphs and describe some class of supermagic line graphs of bipartite graphs.

On magic joins of graphs

Jaroslav Ivančo, Tatiana Polláková (2012)

Mathematica Bohemica

A graph is called magic (supermagic) if it admits a labeling of the edges by pairwise different (and consecutive) integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we characterize magic joins of graphs and we establish some conditions for magic joins of graphs to be supermagic.

Currently displaying 501 – 520 of 1336