Displaying 561 – 580 of 1226

Showing per page

A Note On Vertex Colorings Of Plane Graphs

Igor Fabricia, Stanislav Jendrol’, Roman Soták (2014)

Discussiones Mathematicae Graph Theory

Given an integer valued weighting of all elements of a 2-connected plane graph G with vertex set V , let c(v) denote the sum of the weight of v ∈ V and of the weights of all edges and all faces incident with v. This vertex coloring of G is proper provided that c(u) ≠ c(v) for any two adjacent vertices u and v of G. We show that for every 2-connected plane graph there is such a proper vertex coloring with weights in {1, 2, 3}. In a special case, the value 3 is improved to 2.

A note to independent sets in scheduling

Jan Černý (1995)

Applications of Mathematics

The paper studies the bus-journey graphs in the case when they are piecewise expanding and contracting (if described by fathers-sons relations starting with the greatest independent set of nodes). This approach can make it possible to solve the minimization problem of the total service time of crews.

A parallelogram configuration condition in nets

Jitka Markvartová (1993)

Archivum Mathematicum

After describing a (general and special) coordinatization of k -nets there are found algebraic equivalents for the validity of certain quadrangle configuration conditions in k -nets with small degree k .

A partition of the Catalan numbers and enumeration of genealogical trees

Rainer Schimming (1996)

Discussiones Mathematicae Graph Theory

A special relational structure, called genealogical tree, is introduced; its social interpretation and geometrical realizations are discussed. The numbers C n , k of all abstract genealogical trees with exactly n+1 nodes and k leaves is found by means of enumeration of code words. For each n, the C n , k form a partition of the n-th Catalan numer Cₙ, that means C n , 1 + C n , 2 + . . . + C n , n = C .

A path(ological) partition problem

Izak Broere, Michael Dorfling, Jean E. Dunbar, Marietjie Frick (1998)

Discussiones Mathematicae Graph Theory

Let τ(G) denote the number of vertices in a longest path of the graph G and let k₁ and k₂ be positive integers such that τ(G) = k₁ + k₂. The question at hand is whether the vertex set V(G) can be partitioned into two subsets V₁ and V₂ such that τ(G[V₁] ) ≤ k₁ and τ(G[V₂] ) ≤ k₂. We show that several classes of graphs have this partition property.

Currently displaying 561 – 580 of 1226