The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 241 – 260 of 669

Showing per page

Graphs maximal with respect to hom-properties

Jan Kratochvíl, Peter Mihók, Gabriel Semanišin (1997)

Discussiones Mathematicae Graph Theory

For a simple graph H, →H denotes the class of all graphs that admit homomorphisms to H (such classes of graphs are called hom-properties). We investigate hom-properties from the point of view of the lattice of hereditary properties. In particular, we are interested in characterization of maximal graphs belonging to →H. We also provide a description of graphs maximal with respect to reducible hom-properties and determine the maximum number of edges of graphs belonging to →H.

Graphs with rainbow connection number two

Arnfried Kemnitz, Ingo Schiermeyer (2011)

Discussiones Mathematicae Graph Theory

An edge-coloured graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colours. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow connected. In this paper we prove that rc(G) = 2 for every connected graph G of order n and size m, where n - 1 2 + 1 m n 2 - 1 . We also characterize graphs with rainbow connection number two and large clique number.

Currently displaying 241 – 260 of 669