The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 1 of 1

Showing per page

Inequalities involving independence domination, f -domination, connected and total f -domination numbers

San Ming Zhou (2000)

Czechoslovak Mathematical Journal

Let f be an integer-valued function defined on the vertex set V ( G ) of a graph G . A subset D of V ( G ) is an f -dominating set if each vertex x outside D is adjacent to at least f ( x ) vertices in D . The minimum number of vertices in an f -dominating set is defined to be the f -domination number, denoted by γ f ( G ) . In a similar way one can define the connected and total f -domination numbers γ c , f ( G ) and γ t , f ( G ) . If f ( x ) = 1 for all vertices x , then these are the ordinary domination number, connected domination number and total domination...

Currently displaying 1 – 1 of 1

Page 1