The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 501 –
520 of
585
We construct a locally compact Hausdorff topology on the path space of a finitely aligned k-graph Λ. We identify the boundary-path space ∂Λ as the spectrum of a commutative C*-subalgebra of C*(Λ). Then, using a construction similar to that of Farthing, we construct a finitely aligned k-graph Λ̃ with no sources in which Λ is embedded, and show that ∂Λ is homeomorphic to a subset of ∂Λ̃. We show that when Λ is row-finite, we can identify C*(Λ) with a full corner of C*(Λ̃), and deduce that is isomorphic...
The connectivity and measure theoretic properties of the skeleta of convex bodies in Euclidean space are discussed, together with some long standing problems and recent results.
Currently displaying 501 –
520 of
585