The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 36

Showing per page

The all-paths transit function of a graph

Manoj Changat, Sandi Klavžar, Henry Martyn Mulder (2001)

Czechoslovak Mathematical Journal

A transit function R on a set V is a function R V × V 2 V satisfying the axioms u R ( u , v ) , R ( u , v ) = R ( v , u ) and R ( u , u ) = { u } , for all u , v V . The all-paths transit function of a connected graph is characterized by transit axioms.

Currently displaying 1 – 20 of 36

Page 1 Next