The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 204

Showing per page

Haar system on a product of zero-dimensional compact groups

Sergei Lukomskii (2011)

Open Mathematics

In this work, we study the problem of constructing Haar bases on a product of arbitrary compact zero-dimensional Abelian groups. A general scheme for the construction of Haar functions is given for arbitrary dimension. For dimension d=2, we describe all Haar functions.

Haar wavelets on the Lebesgue spaces of local fields of positive characteristic

Biswaranjan Behera (2014)

Colloquium Mathematicae

We construct the Haar wavelets on a local field K of positive characteristic and show that the Haar wavelet system forms an unconditional basis for L p ( K ) , 1 < p < ∞. We also prove that this system, normalized in L p ( K ) , is a democratic basis of L p ( K ) . This also proves that the Haar system is a greedy basis of L p ( K ) for 1 < p < ∞.

Halfway to a solution of X 2 - D Y 2 = - 3

R. A. Mollin, A. J. Van der Poorten, H. C. Williams (1994)

Journal de théorie des nombres de Bordeaux

It is well known that the continued fraction expansion of D readily displays the midpoint of the principal cycle of ideals, that is, the point halfway to a solution of x 2 - D y 2 = ± 1 . Here we notice that, analogously, the point halfway to a solution of x 2 - D y 2 = - 3 can be recognised. We explain what is going on.

Hankel determinants of the Thue-Morse sequence

Jean-Paul Allouche, Jacques Peyrière, Zhi-Xiong Wen, Zhi-Ying Wen (1998)

Annales de l'institut Fourier

Let ϵ = ( ϵ n ) n 0 be the Thue-Morse sequence, i.e., the sequence defined by the recurrence equations: ϵ 0 = 1 , ϵ 2 n = ϵ n , ϵ 2 n + 1 = 1 - ϵ n . We consider { | n p | } n 1 , p 0 , the double sequence of Hankel determinants (modulo 2) associated with the Thue-Morse sequence. Together with three other sequences, it obeys a set of sixteen recurrence equations. It is shown to be automatic. Applications are given, namely to combinatorial properties of the Thue-Morse sequence and to the existence of certain Padé approximants of the power series n 0 ( - 1 ) ϵ n x n .

Currently displaying 1 – 20 of 204

Page 1 Next