On the higher power moments of cusp form coefficients over sums of two squares
Let be a normalized primitive holomorphic cusp form of even integral weight for the full modular group . Denote by the th normalized Fourier coefficient of . We are interested in the average behaviour of the sum for , where and is any fixed positive integer. In a similar manner, we also establish analogous results for the normalized coefficients of Dirichlet expansions of associated symmetric power -functions and Rankin-Selberg -functions.