Block additive functions on the Gaussian integers
It is shown that a real Hankel matrix admits an approximate block diagonalization in which the successive transformation matrices are upper triangular Toeplitz matrices. The structure of this factorization was first fully discussed in [1]. This approach is extended to obtain the quotients and the remainders appearing in the Euclidean algorithm applied to two polynomials u(x) and v(x) of degree n and m, respectively, whith m < ...
Soit un polynôme en deux variables, de degré et à coefficients entiers dans pour . Alors le nombre de zéros rationnels de est soit infini soit plus petit que . Nous montrons aussi une version plus générale sur les corps de nombres.
Si est le k nombre premier, la fonction de Chebyshev. Nous obtenons de nouvelles estimations et des améliorations des bornes données par Rosser et Schoenfeld, Schoenfeld et Robin pour les fonctionsCes estimations sont obtenues en utilisant des méthodes basées sur l’intégrale de Stieltjes et par calcul direct pour les petites valeurs.
We show that the set of numbers with bounded Lüroth expansions (or bounded Lüroth series) is winning and strong winning. From either winning property, it immediately follows that the set is dense, has full Hausdorff dimension, and satisfies a countable intersection property. Our result matches the well-known analogous result for bounded continued fraction expansions or, equivalently, badly approximable numbers. We note that Lüroth expansions have a countably infinite Markov partition,...