Displaying 201 – 220 of 694

Showing per page

Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences

M. Blümlinger, N. Obata (1991)

Annales de l'institut Fourier

We are interested in permutations preserving certain distribution properties of sequences. In particular we consider μ -uniformly distributed sequences on a compact metric space X , 0-1 sequences with densities, and Cesàro summable bounded sequences. It is shown that the maximal subgroups, respectively subsemigroups, of A u t ( N ) leaving any of the above spaces invariant coincide. A subgroup of these permutation groups, which can be determined explicitly, is the Lévy group 𝒢 . We show that 𝒢 is big in the...

Permuting the partitions of a prime

Stéphane Vinatier (2009)

Journal de Théorie des Nombres de Bordeaux

Given an odd prime number p , we characterize the partitions ̲ of p with p non negative parts 0 1 ... p - 1 0 for which there exist permutations σ , τ of the set { 0 , ... , p - 1 } such that p divides i = 0 p - 1 i σ ( i ) but does not divide i = 0 p - 1 i τ ( i ) . This happens if and only if the maximal number of equal parts of ̲ is less than p - 2 . The question appeared when dealing with sums of p -th powers of resolvents, in order to solve a Galois module structure problem.

Petits discriminants

Jacques Martinet (1979)

Annales de l'institut Fourier

On construit des corps de nombres de petits discriminants relativement aux minorations de Odlyzko.

Piatetski-Shapiro meets Chebotarev

Yıldırım Akbal, Ahmet Muhtar Güloğlu (2015)

Acta Arithmetica

Let K be a finite Galois extension of the field ℚ of rational numbers. We prove an asymptotic formula for the number of Piatetski-Shapiro primes not exceeding a given quantity for which the associated Frobenius class of automorphisms coincides with any given conjugacy class in the Galois group of K/ℚ. In particular, this shows that there are infinitely many Piatetski-Shapiro primes of the form a² + nb² for any given natural number n.

Piatetski-Shapiro sequences

Roger C. Baker, William D. Banks, Jörg Brüdern, Igor E. Shparlinski, Andreas J. Weingartner (2013)

Acta Arithmetica

Piatetski-Shapiro sequences via Beatty sequences

Lukas Spiegelhofer (2014)

Acta Arithmetica

Integer sequences of the form n c , where 1 < c < 2, can be locally approximated by sequences of the form ⌊nα+β⌋ in a very good way. Following this approach, we are led to an estimate of the difference n x φ ( n c ) - 1 / c n x c φ ( n ) n 1 / c - 1 , which measures the deviation of the mean value of φ on the subsequence n c from the expected value, by an expression involving exponential sums. As an application we prove that for 1 < c ≤ 1.42 the subsequence of the Thue-Morse sequence indexed by n c attains both of its values with asymptotic...

Currently displaying 201 – 220 of 694