The Continuity of the Limiting Distribution of a Function of Two Additive Functions.
In 1927, E. Artin proposed a conjectural density for the set of primes for which a given integer is a primitive root modulo . After computer calculations in 1957 by D. H. and E. Lehmer showed unexpected deviations, Artin introduced a correction factor to explain these discrepancies. The modified conjecture was proved by Hooley in 1967 under assumption of the generalized Riemann hypothesis. This paper discusses two recent developments with respect to the correction factor. The first is of historical...
Let be a numerical semigroup. We say that is an isolated gap of if A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by the multiplicity of a numerical semigroup . A covariety is a nonempty family of numerical semigroups that fulfills the following conditions: there exists the minimum of the intersection of two elements of is again an element of , and for all such that We prove that the set is a perfect numerical semigroup with...
The article studies the cubic mapping graph of , the ring of Gaussian integers modulo . For each positive integer , the number of fixed points and the in-degree of the elements and in are found. Moreover, complete characterizations in terms of are given in which is semiregular, where is induced by all the zero-divisors of .
We show that a cubic algebraic integer over a number field with zero trace is a difference of two conjugates over of an algebraic integer. We also prove that if is a normal cubic extension of the field of rational numbers, then every integer of with zero trace is a difference of two conjugates of an integer of if and only if the adic valuation of the discriminant of is not
Let be a prime, be the non-singular projective curve defined over by the affine model , the point of at infinity on this model, the Jacobian of , and the albanese embedding with as base point. Let be an algebraic closure of . Taking care of a case not covered in [12], we show that consists only of the image under of the Weierstrass points of and the points and , where denotes the torsion points of .
In this note we consider the index in the ring of integers of an abelian extension of a number field of the additive subgroup generated by integers which lie in subfields that are cyclic over . This index is finite, it only depends on the Galois group and the degree of , and we give an explicit combinatorial formula for it. When generalizing to more general Dedekind domains, a correction term can be needed if there is an inseparable extension of residue fields. We identify this correction term...
We show that it is decidable whether or not a given Q-rational series in several noncommutative variables has a cyclic image. By definition, a series r has a cyclic image if there is a rational number q such that all nonzero coefficients of r are integer powers of q.
We show that it is decidable whether or not a given Q-rational series in several noncommutative variables has a cyclic image. By definition, a series r has a cyclic image if there is a rational number q such that all nonzero coefficients of r are integer powers of q.