Displaying 201 – 220 of 1340

Showing per page

The correction factor in Artin's primitive root conjecture

Peter Stevenhagen (2003)

Journal de théorie des nombres de Bordeaux

In 1927, E. Artin proposed a conjectural density for the set of primes p for which a given integer g is a primitive root modulo p . After computer calculations in 1957 by D. H. and E. Lehmer showed unexpected deviations, Artin introduced a correction factor to explain these discrepancies. The modified conjecture was proved by Hooley in 1967 under assumption of the generalized Riemann hypothesis. This paper discusses two recent developments with respect to the correction factor. The first is of historical...

The covariety of perfect numerical semigroups with fixed Frobenius number

María Ángeles Moreno-Frías, José Carlos Rosales (2024)

Czechoslovak Mathematical Journal

Let S be a numerical semigroup. We say that h S is an isolated gap of S if { h - 1 , h + 1 } S . A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m ( S ) the multiplicity of a numerical semigroup S . A covariety is a nonempty family 𝒞 of numerical semigroups that fulfills the following conditions: there exists the minimum of 𝒞 , the intersection of two elements of 𝒞 is again an element of 𝒞 , and S { m ( S ) } 𝒞 for all S 𝒞 such that S min ( 𝒞 ) . We prove that the set 𝒫 ( F ) = { S : S is a perfect numerical semigroup with...

The cube recurrence.

Carroll, Gabriel D., Speyer, David (2004)

The Electronic Journal of Combinatorics [electronic only]

The cubic mapping graph for the ring of Gaussian integers modulo n

Yangjiang Wei, Jizhu Nan, Gaohua Tang (2011)

Czechoslovak Mathematical Journal

The article studies the cubic mapping graph Γ ( n ) of n [ i ] , the ring of Gaussian integers modulo n . For each positive integer n > 1 , the number of fixed points and the in-degree of the elements 1 ¯ and 0 ¯ in Γ ( n ) are found. Moreover, complete characterizations in terms of n are given in which Γ 2 ( n ) is semiregular, where Γ 2 ( n ) is induced by all the zero-divisors of n [ i ] .

The cubics which are differences of two conjugates of an algebraic integer

Toufik Zaimi (2005)

Journal de Théorie des Nombres de Bordeaux

We show that a cubic algebraic integer over a number field K , with zero trace is a difference of two conjugates over K of an algebraic integer. We also prove that if N is a normal cubic extension of the field of rational numbers, then every integer of N with zero trace is a difference of two conjugates of an integer of N if and only if the 3 - adic valuation of the discriminant of N is not 4 .

The cuspidal torsion packet on hyperelliptic Fermat quotients

David Grant, Delphy Shaulis (2004)

Journal de Théorie des Nombres de Bordeaux

Let 7 be a prime, C be the non-singular projective curve defined over by the affine model y ( 1 - y ) = x , the point of C at infinity on this model, J the Jacobian of C , and φ : C J the albanese embedding with as base point. Let ¯ be an algebraic closure of . Taking care of a case not covered in [12], we show that φ ( C ) J tors ( ¯ ) consists only of the image under φ of the Weierstrass points of C and the points ( x , y ) = ( 0 , 0 ) and ( 0 , 1 ) , where J tors denotes the torsion points of J .

The cyclic subfield integer index

Bart de Smit (2000)

Journal de théorie des nombres de Bordeaux

In this note we consider the index in the ring of integers of an abelian extension of a number field K of the additive subgroup generated by integers which lie in subfields that are cyclic over K . This index is finite, it only depends on the Galois group and the degree of K , and we give an explicit combinatorial formula for it. When generalizing to more general Dedekind domains, a correction term can be needed if there is an inseparable extension of residue fields. We identify this correction term...

The cyclicity problem for the images of Q-rational series

Juha Honkala (2011)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We show that it is decidable whether or not a given Q-rational series in several noncommutative variables has a cyclic image. By definition, a series r has a cyclic image if there is a rational number q such that all nonzero coefficients of r are integer powers of q.

The cyclicity problem for the images of Q-rational series

Juha Honkala (2012)

RAIRO - Theoretical Informatics and Applications

We show that it is decidable whether or not a given Q-rational series in several noncommutative variables has a cyclic image. By definition, a series r has a cyclic image if there is a rational number q such that all nonzero coefficients of r are integer powers of q.

Currently displaying 201 – 220 of 1340