Displaying 2881 – 2900 of 16591

Showing per page

Convergence of series of dilated functions and spectral norms of GCD matrices

Christoph Aistleitner, István Berkes, Kristian Seip, Michel Weber (2015)

Acta Arithmetica

We establish a connection between the L² norm of sums of dilated functions whose jth Fourier coefficients are ( j - α ) for some α ∈ (1/2,1), and the spectral norms of certain greatest common divisor (GCD) matrices. Utilizing recent bounds for these spectral norms, we obtain sharp conditions for the convergence in L² and for the almost everywhere convergence of series of dilated functions.

Convolution of second order linear recursive sequences II.

Tamás Szakács (2017)

Communications in Mathematics

We continue the investigation of convolutions of second order linear recursive sequences (see the first part in [1]). In this paper, we focus on the case when the characteristic polynomials of the sequences have common root.

Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1

(2016)

Acta Arithmetica

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≢ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p ) 1 / p , a j , such that ( x - 1 ) k divides P(x). For n ∈ ℕ, L > 0, and q ≥ 1 let μ q ( n , L ) be the smallest value of k for which there is a polynomial Q of degree k with complex coefficients such that | Q ( 0 ) | > 1 / L ( j = 1 n | Q ( j ) | q ) 1 / q . We find the size of κ p ( n , L ) and μ q ( n , L ) for all n ∈ ℕ, L > 0, and 1 ≤ p,q ≤ ∞. The result about μ ( n , L ) is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even in that special...

Coprimality of integers in Piatetski-Shapiro sequences

Watcharapon Pimsert, Teerapat Srichan, Pinthira Tangsupphathawat (2023)

Czechoslovak Mathematical Journal

We use the estimation of the number of integers n such that n c belongs to an arithmetic progression to study the coprimality of integers in c = { n c } n , c > 1 , c .

Corestriction of central simple algebras and families of Mumford-type

Federica Galluzzi (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let M be a family of Mumford-type, that is, a family of polarized complex abelian fourfolds as introduced by Mumford in [9]. This family is defined starting from a quaternion algebra A over a real cubic number field and imposing a condition to the corestriction of such A . In this paper, under some extra conditions on the algebra A , we make this condition explicit and in this way we are able to describe the polarization and the complex structures of the fibers. Then, we look at the non simple C M -fibers...

Currently displaying 2881 – 2900 of 16591