Displaying 2901 – 2920 of 16591

Showing per page

Corps de définition et points rationnels

Geoffroy Derome (2003)

Journal de théorie des nombres de Bordeaux

Soit 𝔒 un objet algébrique (par exemple une courbe ou un revêtement) défini sur ¯ et de corps des modules un corps de nombres K . Il est bien connu que 𝔒 n’admet pas nécessairement de K -modèle. En utilisant deux résultats récents dus à P. Dèbes, J.-C. Douai et M. Emsalem nous donnerons un majorant pour le degré d’un corps de définition de 𝔒 sur K . Dans une deuxième partie, nous donnerons des conditions suffisantes sur l’ordre de Aut( 𝔒 ) pour que 𝔒 admette un K -modèle.

Corps diédraux à multiplication complexe principaux

Yann Lefeuvre (2000)

Annales de l'institut Fourier

Nous déterminons tous les corps diédraux à multiplication complexe de nombres de classes relatif un, puis ceux de nombre de classes un : il y a 32 tels corps non-abéliens principaux. C’est le premier exemple, dans ce cadre assez général, de résolution du problème de nombre de classes un pour les corps galoisiens à multiplication complexe avec un type de groupe de Galois non-abélien fixé.

Corps quadratiques, G L 2 ( 𝐙 ) et polynômes de Dickson

Michel Kervaire (1996)

Annales de l'institut Fourier

On caractérise les puissances n -ièmes dans un corps quadratique réel et dans G L 2 ( Z ) à l’aide des polynômes de Dickson. Ces mêmes polynômes sont utilisés pour obtenir des renseignements sur l’indice du groupe des unités d’un ordre non-maximal dans le groupe de toutes les unités d’un corps quadratique réel. Le texte est détaillé et élémentaire.

Corps sextiques primitifs

Michel Olivier (1990)

Annales de l'institut Fourier

Nous décrivons quatre tables de corps sextiques primitifs (une par signature). Les tables fournissent pour chaque corps, le discriminant, le groupe de Galois de la clôture galoisienne et un polynôme définissant le corps.

Correct rounding of algebraic functions

Nicolas Brisebarre, Jean-Michel Muller (2007)

RAIRO - Theoretical Informatics and Applications

We explicit the link between the computer arithmetic problem of providing correctly rounded algebraic functions and some diophantine approximation issues. This allows to get bounds on the accuracy with which intermediate calculations must be performed to correctly round these functions.

Currently displaying 2901 – 2920 of 16591