Displaying 3001 – 3020 of 3028

Showing per page

Ordre, convergence et sommabilité de produits de séries de Dirichlet

Jean-Pierre Kahane, Hervé Queffélec (1997)

Annales de l'institut Fourier

L’article donne des réponses optimales ou presque optimales aux questions suivantes, qui remontent à Stieltjes, Landau et Bohr, et concernent des séries de Dirichlet A j = n = 1 a ( j , n ) n - s ( j = 1 , 2 ...

Ordre de grandeur de L ( 1 , χ ) et de L ' ( 1 , χ )

Jean-René Joly, Claude Moser (1979)

Annales de l'institut Fourier

On étudie sommairement la distribution des valeurs de L ' ( 1 , χ ) ( χ : caractère de Dirichlet primitif réel) et on constate qu’on a en général L ' ( 1 , χ ) < π 2 / 6 ; on démontre par ailleurs que si L ' ( 1 , χ ) < ( π 2 / 6 ) - ϵ , alors L ( 1 , χ ) > c ( ϵ ) / log k ( k : conducteur de χ ; c ( ϵ ) : constante positive effectivement calculable.

Oscillation of Mertens’ product formula

Harold G. Diamond, Janos Pintz (2009)

Journal de Théorie des Nombres de Bordeaux

Mertens’ product formula asserts that p x 1 - 1 p log x e - γ as x . Calculation shows that the right side of the formula exceeds the left side for 2 x 10 8 . It was suggested by Rosser and Schoenfeld that, by analogy with Littlewood’s result on π ( x ) - li x , this and a complementary inequality might change their sense for sufficiently large values of x . We show this to be the case.

Oscillations d'un terme d'erreur lié à la fonction totient de Jordan

Y.-F. S. Pétermann (1991)

Journal de théorie des nombres de Bordeaux

Let J k ( n ) : = n k p n ( 1 - p - k ) (the k -th Jordan totient function, and for k = 1 the Euler phi function), and consider the associated error term E k ( x ) : = n x J k ( n ) - x k + 1 ( k + 1 ) ζ ( k + 1 ) . When k 2 , both i k : = E k ( x ) x - k and s k : = lim sup E k ( x ) x - k are finite, and we are interested in estimating these quantities. We may consider instead I k : = lim inf n , n d 1 (d)dk ( 12 - { nd} ), since from [AS] i k = I k - ( ζ ( k + 1 ) ) - 1 and from the present paper s k = - i k . We show that I k belongs to an interval of the form 1 2 ζ ( k ) - 1 ( k - 1 ) N k - 1 , 1 2 ζ ( k ) , where N = N ( k ) as k . From a more practical point of view we describe an algorithm capable of yielding arbitrary good approximations of I k . We apply this algorithm...

Oscillations of Hecke eigenvalues at shifted primes.

Liangyi Zhao (2006)

Revista Matemática Iberoamericana

In this paper, we are interested in exploring the cancellation of Hecke eigenvalues twisted with an exponential sums whose amplitude is √n at prime arguments.

Currently displaying 3001 – 3020 of 3028