Ordre, convergence et sommabilité de produits de séries de Dirichlet
L’article donne des réponses optimales ou presque optimales aux questions suivantes, qui remontent à Stieltjes, Landau et Bohr, et concernent des séries de Dirichlet
L’article donne des réponses optimales ou presque optimales aux questions suivantes, qui remontent à Stieltjes, Landau et Bohr, et concernent des séries de Dirichlet
On étudie sommairement la distribution des valeurs de ( : caractère de Dirichlet primitif réel) et on constate qu’on a en général ; on démontre par ailleurs que si , alors ( : conducteur de ; : constante positive effectivement calculable.
Mertens’ product formula asserts thatas . Calculation shows that the right side of the formula exceeds the left side for . It was suggested by Rosser and Schoenfeld that, by analogy with Littlewood’s result on , this and a complementary inequality might change their sense for sufficiently large values of . We show this to be the case.
Let (the -th Jordan totient function, and for the Euler phi function), and consider the associated error termWhen , both and are finite, and we are interested in estimating these quantities. We may consider insteadd 1 (d)dk ( 12 - { nd} ), since from [AS] and from the present paper . We show that belongs to an interval of the formwhere as . From a more practical point of view we describe an algorithm capable of yielding arbitrary good approximations of . We apply this algorithm...
In this paper, we are interested in exploring the cancellation of Hecke eigenvalues twisted with an exponential sums whose amplitude is √n at prime arguments.