Displaying 541 – 560 of 765

Showing per page

Euler system for Galois deformations

Tadashi Ochiai (2005)

Annales de l’institut Fourier

In this paper, we develop the Euler system theory for Galois deformations. By applying this theory to the Beilinson-Kato Euler system for Hida’s nearly ordinary modular deformations, we prove one of the inequalities predicted by the two-variable Iwasawa main conjecture. Our method of the proof of the Euler system theory is based on non-arithmetic specializations. This gives a new simplified proof of the inequality between the characteristic ideal of the Selmer group of a Galois deformation and the...

Euler’s Partition Theorem

Karol Pąk (2015)

Formalized Mathematics

In this article we prove the Euler’s Partition Theorem which states that the number of integer partitions with odd parts equals the number of partitions with distinct parts. The formalization follows H.S. Wilf’s lecture notes [28] (see also [1]). Euler’s Partition Theorem is listed as item #45 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/ [27].

Evaluation of divisor functions of matrices

Gautami Bhowmik (1996)

Acta Arithmetica

1. Introduction. The study of divisor functions of matrices arose legitimately in the context of arithmetic of matrices, and the question of the number of (possibly weighted) inequivalent factorizations of an integer matrix was asked. However, till now only partial answers were available. Nanda [6] evaluated the case of prime matrices and Narang [7] gave an evaluation for 2×2 matrices. We obtained a recursion in the size of the matrices and the weights of the divisors [1,2] which helped us obtain...

Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52

Ebénézer Ntienjem (2017)

Open Mathematics

The convolution sum, [...] ∑(l,m)∈N02αl+βm=nσ(l)σ(m), ( l , m ) 0 2 α l + β m = n σ ( l ) σ ( m ) , where αβ = 22, 44, 52, is evaluated for all natural numbers n. Modular forms are used to achieve these evaluations. Since the modular space of level 22 is contained in that of level 44, we almost completely use the basis elements of the modular space of level 44 to carry out the evaluation of the convolution sums for αβ = 22. We then use these convolution sums to determine formulae for the number of representations of a positive integer by...

Evaluation of the sums m = 1 m a ( mod 4 ) n - 1 σ ( m ) σ ( n - m )

Ayşe Alaca, Şaban Alaca, Kenneth S. Williams (2009)

Czechoslovak Mathematical Journal

The convolution sum m = 1 m a ( mod 4 ) n - 1 σ ( m ) σ ( n - m ) is evaluated for a { 0 , 1 , 2 , 3 } and all n . This completes the partial evaluation given in the paper of J. G. Huard, Z. M. Ou, B. K. Spearman, K. S. Williams.

Currently displaying 541 – 560 of 765