The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 601 – 620 of 1970

Showing per page

A note on some discrete valuation rings of arithmetical functions

Emil Daniel Schwab, Gheorghe Silberberg (2000)

Archivum Mathematicum

The paper studies the structure of the ring A of arithmetical functions, where the multiplication is defined as the Dirichlet convolution. It is proven that A itself is not a discrete valuation ring, but a certain extension of it is constructed,this extension being a discrete valuation ring. Finally, the metric structure of the ring A is examined.

A note on some expansions of p-adic functions

Grzegorz Szkibiel (1992)

Acta Arithmetica

Introduction. Recently J. Rutkowski (see [3]) has defined the p-adic analogue of the Walsh system, which we shall denote by ( ϕ ) m . The system ( ϕ ) m is defined in the space C(ℤₚ,ℂₚ) of ℂₚ-valued continuous functions on ℤₚ. J. Rutkowski has also considered some questions concerning expansions of functions from C(ℤₚ,ℂₚ) with respect to ( ϕ ) m . This paper is a remark to Rutkowski’s paper. We define another system ( h ) n in C(ℤₚ,ℂₚ), investigate its properties and compare it to the system defined by Rutkowski. The system...

A Note on squares in arithmetic progressions, II

Enrico Bombieri, Umberto Zannier (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We show that the number of squares in an arithmetic progression of length N is at most c 1 N 3 / 5 log N c 2 , for certain absolute positive constants c 1 , c 2 . This improves the previous result of Bombieri, Granville and Pintz [1], where one had the exponent 2 3 in place of our 3 5 . The proof uses the same ideas as in [1], but introduces a substantial simplification by working only with elliptic curves rather than curves of genus 5 as in [1].

A note on sumsets of subgroups in * p

Derrick Hart (2013)

Acta Arithmetica

Let A be a multiplicative subgroup of * p . Define the k-fold sumset of A to be k A = x 1 + . . . + x k : x i A , 1 i k . We show that 6 A * p for | A | > p 11 / 23 + ϵ . In addition, we extend a result of Shkredov to show that | 2 A | | A | 8 / 5 - ϵ for | A | p 5 / 9 .

A note on ternary purely exponential diophantine equations

Yongzhong Hu, Maohua Le (2015)

Acta Arithmetica

Let a,b,c be fixed coprime positive integers with mina,b,c > 1, and let m = maxa,b,c. Using the Gel’fond-Baker method, we prove that all positive integer solutions (x,y,z) of the equation a x + b y = c z satisfy maxx,y,z < 155000(log m)³. Moreover, using that result, we prove that if a,b,c satisfy certain divisibility conditions and m is large enough, then the equation has at most one solution (x,y,z) with minx,y,z > 1.

A note on the congruence n p k m p k n m ( mod p r )

Romeo Meštrović (2012)

Czechoslovak Mathematical Journal

In the paper we discuss the following type congruences: n p k m p k m n ( mod p r ) , where p is a prime, n , m , k and r are various positive integers with n m 1 , k 1 and r 1 . Given positive integers k and r , denote by W ( k , r ) the set of all primes p such that the above congruence holds for every pair of integers n m 1 . Using Ljunggren’s and Jacobsthal’s type congruences, we establish several characterizations of sets W ( k , r ) and inclusion relations between them for various values k and r . In particular, we prove that W ( k + i , r ) = W ( k - 1 , r ) for all k 2 , i 0 and 3 r 3 k , and W ( k , r ) = W ( 1 , r ) for...

A note on the diophantine equation k 2 - 1 = q n + 1

Maohua Le (1998)

Colloquium Mathematicae

In this note we prove that the equation k 2 - 1 = q n + 1 , q 2 , n 3 , has only finitely many positive integer solutions ( k , q , n ) . Moreover, all solutions ( k , q , n ) satisfy k 10 10 182 , q 10 10 165 and n 2 · 10 17 .

A note on the Diophantine equation P(z) = n! + m!

Maciej Gawron (2013)

Colloquium Mathematicae

We consider the Brocard-Ramanujan type Diophantine equation P(z) = n! + m!, where P is a polynomial with rational coefficients. We show that the ABC Conjecture implies that this equation has only finitely many integer solutions when d ≥ 2 and P ( z ) = a d z d + a d - 3 z d - 3 + + a x + a .

Currently displaying 601 – 620 of 1970