Displaying 601 – 620 of 1340

Showing per page

The Lehmer constants of an annulus

Artūras Dubickas, Chris J. Smyth (2001)

Journal de théorie des nombres de Bordeaux

Let M ( α ) be the Mahler measure of an algebraic number α , and V be an open subset of . Then its Lehmer constant L ( V ) is inf M ( α ) 1 / deg ( α ) , the infimum being over all non-zero non-cyclotomic α lying with its conjugates outside V . We evaluate L ( V ) when V is any annulus centered at 0 . We do the same for a variant of L ( V ) , which we call the transfinite Lehmer constant L ( V ) .Also, we prove the converse to Langevin’s Theorem, which states that L ( V ) > 1 if V contains a point of modulus 1 . We prove the corresponding result for L ( V ) .

The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and Euler systems

Cornelius Greither, Radiu Kučera (2002)

Annales de l’institut Fourier

The so-called Lifted Root Number Conjecture is a strengthening of Chinburg’s Ω ( 3 ) - conjecture for Galois extensions K / F of number fields. It is certainly more difficult than the Ω ( 3 ) -localization. Following the lead of Ritter and Weiss, we prove the Lifted Root Number Conjecture for the case that F = and the degree of K / F is an odd prime, with another small restriction on ramification. The very explicit calculations with cyclotomic units use trees and some classical combinatorics for bookkeeping. An important...

The Ljunggren equation revisited

Konstantinos A. Draziotis (2007)

Colloquium Mathematicae

We study the Ljunggren equation Y² + 1 = 2X⁴ using the "multiplication by 2" method of Chabauty.

Currently displaying 601 – 620 of 1340