Displaying 1181 – 1200 of 1526

Showing per page

Sur le groupe des classes d’un schéma arithmétique

Bruno Kahn (2006)

Bulletin de la Société Mathématique de France

Nous donnons une démonstration du fait que le groupe des classes d’un schéma irréductible de type fini sur Spec 𝐙 est de type fini. Cette preuve ne repose pas sur le théorème de Mordell-Weil-Néron, mais plutôt sur le théorème de Mordell-Weil classique, le théorème de Néron-Severi et les théorèmes de Hironaka et de Jong sur la résolution des singularités. Nous en déduisons quelques corollaires, parmi lesquels le théorème de Mordell-Weil-Néron lui-même.

Sur le groupe des unités de corps de nombres de degré 2 et 4

M’hammed Ziane (2007)

Journal de Théorie des Nombres de Bordeaux

Nous déterminons sous certaines hypothèses, un système fondamental d’unités du corps non pur K = ( ω ) et de son sous-corps quadratique, où ω est solution du polynôme f ( X ) = X 4 + d - 2 M 6 X 2 - M 4 , avec M 6 = D 6 + 6 D 4 d + 9 D 2 d 2 + 2 d 3 , M 4 = D 4 + 4 D 2 d + 2 d 2 , d | D , d , D , non nuls.

Sur le nombre e

V. Jamet (1891)

Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale

Currently displaying 1181 – 1200 of 1526