On the Analytic Continuation of Rank One Eisenstein Series.
We give several examples of classes of trace forms for which the ideal of annihilating polynomials is principal. We prove, that in general, the annihilating ideal is not a principal ideal.
In the present paper, we obtain two new formulas of the Apostol-Bernoulli polynomials (see On the Lerch Zeta function. Pacific J. Math., 1 (1951), 161–167.), using the Gaussian hypergeometric functions and Hurwitz Zeta functions respectively, and give certain special cases and applications.
Let ℕ represent the positive integers and ℕ₀ the non-negative integers. If b ∈ ℕ and Γ is a multiplicatively closed subset of , then the set is a multiplicative submonoid of ℕ known as a congruence monoid. An arithmetical congruence monoid (or ACM) is a congruence monoid where Γ = ā consists of a single element. If is an ACM, then we represent it with the notation M(a,b) = (a + bℕ₀) ∪ 1, where a, b ∈ ℕ and a² ≡ a (mod b). A classical 1954 result of James and Niven implies that the only ACM...
We develop the relation between hyperbolic geometry and arithmetic equidistribution problems that arises from the action of arithmetic groups on real hyperbolic spaces, especially in dimension . We prove generalisations of Mertens’ formula for quadratic imaginary number fields and definite quaternion algebras over , counting results of quadratic irrationals with respect to two different natural complexities, and counting results of representations of (algebraic) integers by binary quadratic, Hermitian...