Period of a linear recurrence
This survey deals with pluri-periodic harmonic functions on lattices with values in a field of positive characteristic. We mention, as a motivation, the game “Lights Out” following the work of Sutner [20], Goldwasser- Klostermeyer-Ware [5], Barua-Ramakrishnan-Sarkar [2, 19], Hunzikel-Machiavello-Park [12] e.a.; see also [22, 23] for a more detailed account. Our approach uses harmonic analysis and algebraic geometry over a field of positive characteristic.
We prove that, for any unit in a real number field of degree , there exits only a finite number of n-tuples in which have a purely periodic expansion by the Jacobi-Perron algorithm. This generalizes the case of continued fractions for . For we give an explicit algorithm to compute all these pairs.
Soit une courbe elliptique sur par un modèle de Weierstrass généralisé :Soit avec , un point rationnel sur cette courbe. Pour tout entier , on exprime les coordonnées de sous la forme :où et , , sont déduits par multiplication par des puissances convenables de .Soit un nombre premier impair et supposons que est non singulier et que le rang d’apparition de dans la suite d’entiers est supérieur ou égal à trois. Notons ce rang par et soit . Nous montrons que la suite ...