On Lucas and Lehmer sequences and their applications to Diophantine equations
Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers and respectively, such that and are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.
Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers β and γ respectively, such that β and γ are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.
Let and let be the -generalized Pell sequence defined by for with initial conditions In this study, we handle the equation in positive integers , , , such that and give an upper bound on Also, we will show that the equation with has only one solution given by
We study generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions. We present some properties of these quaternions and the relations between the generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions.
In this paper, we find all the solutions of the Diophantine equation in positive integer variables , where is the balancing number if the exponents , are included in the set .