On some properties of bivariate Fibonacci and Lucas polynomials.
Letting (resp. ) be the n-th Chebyshev polynomials of the first (resp. second) kind, we prove that the sequences and for n - 2⎣n/2⎦ ≤ k ≤ n - ⎣n/2⎦ are two basis of the ℚ-vectorial space formed by the polynomials of ℚ[X] having the same parity as n and of degree ≤ n. Also and admit remarkableness integer coordinates on each of the two basis.
Let P and Q be nonzero integers. The generalized Fibonacci and Lucas sequences are defined respectively as follows: U₀ = 0, U₁ = 1, V₀ = 2, V₁ = P and , for n ≥ 1. In this paper, when w ∈ 1,2,3,6, for all odd relatively prime values of P and Q such that P ≥ 1 and P² + 4Q > 0, we determine all n and m satisfying the equation Uₙ = wUₘx². In particular, when k|P and k > 1, we solve the equations Uₙ = kx² and Uₙ = 2kx². As a result, we determine all n such that Uₙ = 6x².
Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum , where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and , then , where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If then .
In 2000, Florian Luca proved that F₁₀ = 55 and L₅ = 11 are the largest numbers with only one distinct digit in the Fibonacci and Lucas sequences, respectively. In this paper, we find terms of a linear recurrence sequence with only one block of digits in its expansion in base g ≥ 2. As an application, we generalize Luca's result by finding the Fibonacci and Lucas numbers with only one distinct block of digits of length up to 10 in its decimal expansion.
In this paper, we define the arrowhead-Fibonacci numbers by using the arrowhead matrix of the characteristic polynomial of the k-step Fibonacci sequence and then we give some of their properties. Also, we study the arrowhead-Fibonacci sequence modulo m and we obtain the cyclic groups from the generating matrix of the arrowhead-Fibonacci numbers when read modulo m. Then we derive the relationships between the orders of the cyclic groups obtained and the periods of the arrowhead-Fibonacci sequence...
Let be an odd prime. By using the elementary methods we prove that: (1) if , the Diophantine equation has no positive integer solution except when or is of the form , where is an odd positive integer. (2) if , , then the Diophantine equation has no positive integer solution.
Let denote the term of the Fibonacci sequence. In this paper, we investigate the Diophantine equation in the positive integers and , where and are given positive integers. A complete solution is given if the exponents are included in the set . Based on the specific cases we could solve, and a computer search with we conjecture that beside the trivial solutions only , , and satisfy the title equation.