The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Le théorème de Riesz-Raikov-Bourgain pour un endomorphisme algébrique de p

Jean-Claude Lootgieter (2007)

Annales de l’institut Fourier

Le théorème classique de Riesz-Raikov assure que, pour tout entier θ > 1 et toute f de L 1 ( 𝕋 ) , où 𝕋 = / , les moyennes 1 N 1 N f ( θ n x ) convergent vers 𝕋 f ( t ) d t pour presque tout point x de . J.Bourgain (cf.Israël Math. Conf. Proc. 1990) a prouvé que la convergence précédente a lieu pour tout réel algébrique θ > 1 et toute  f de  L 2 ( 𝕋 ) . Dans cet article nous prouvons que, si ϕ est un endomorphisme de  p algébrique sur , dont les valeurs propres sont toutes de module  > 1 , alors pour toute f de L 2 ( 𝕋 p ) , les moyennes ( 1 / N ) 1 N f ( ϕ n x ) convergent vers 𝕋 p f ( t ) d t pour presque tout point x de p . Nous...

Currently displaying 1 – 4 of 4

Page 1