The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 30

Showing per page

The Diophantine equation ( b n ) x + ( 2 n ) y = ( ( b + 2 ) n ) z

Min Tang, Quan-Hui Yang (2013)

Colloquium Mathematicae

Recently, Miyazaki and Togbé proved that for any fixed odd integer b ≥ 5 with b ≠ 89, the Diophantine equation b x + 2 y = ( b + 2 ) z has only the solution (x,y,z) = (1,1,1). We give an extension of this result.

The Diophantine equation D x ² + 2 2 m + 1 = y

J. H. E. Cohn (2003)

Colloquium Mathematicae

It is shown that for a given squarefree positive integer D, the equation of the title has no solutions in integers x > 0, m > 0, n ≥ 3 and y odd, nor unless D ≡ 14 (mod 16) in integers x > 0, m = 0, n ≥ 3, y > 0, provided in each case that n does not divide the class number of the imaginary quadratic field containing √(-2D), except for a small number of (stated) exceptions.

The diophantine equation x 2 + 2 a · 17 b = y n

Su Gou, Tingting Wang (2012)

Czechoslovak Mathematical Journal

Let , be the sets of all integers and positive integers, respectively. Let p be a fixed odd prime. Recently, there have been many papers concerned with solutions ( x , y , n , a , b ) of the equation x 2 + 2 a p b = y n , x , y , n , gcd ( x , y ) = 1 , n 3 , a , b , a 0 , b 0 . And all solutions of it have been determined for the cases p = 3 , p = 5 , p = 11 and p = 13 . In this paper, we mainly concentrate on the case p = 3 , and using certain recent results on exponential diophantine equations including the famous Catalan equation, all solutions ( x , y , n , a , b ) of the equation x 2 + 2 a · 17 b = y n , x , y , n , gcd ( x , y ) = 1 , n 3 , a , b , a 0 , b 0 , are determined....

The number of solutions to the generalized Pillai equation ± r a x ± s b y = c .

Reese Scott, Robert Styer (2013)

Journal de Théorie des Nombres de Bordeaux

We consider N , the number of solutions ( x , y , u , v ) to the equation ( - 1 ) u r a x + ( - 1 ) v s b y = c in nonnegative integers x , y and integers u , v { 0 , 1 } , for given integers a > 1 , b > 1 , c > 0 , r > 0 and s > 0 . When gcd ( r a , s b ) = 1 , we show that N 3 except for a finite number of cases all of which satisfy max ( a , b , r , s , x , y ) < 2 · 10 15 for each solution; when gcd ( a , b ) > 1 , we show that N 3 except for three infinite families of exceptional cases. We find several different ways to generate an infinite number of cases giving N = 3 solutions.

Currently displaying 1 – 20 of 30

Page 1 Next