The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give a geometric interpretation of an arithmetic rule to generate explicit formulas for the Fourier coefficients of elliptic modular forms and their associated Jacobi forms. We discuss applications of these formulas and derive as an example a criterion similar to Tunnel's criterion for a number to be a congruent number.
Let be a Hecke–Maass cusp form of eigenvalue and square-free level . Normalize the hyperbolic measure such that and the form such that . It is shown that for all . This generalizes simultaneously the current best bounds in the eigenvalue and level aspects.
Currently displaying 1 –
4 of
4