The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 129

Showing per page

A bound for the average rank of a family of abelian varieties

Rania Wazir (2004)

Bollettino dell'Unione Matematica Italiana

In this note, we consider a one-parameter family of Abelian varieties A / Q T , and find an upper bound for the average rank in terms of the generic rank. This bound is based on Michel's estimates for the average rank in a one-parameter family of Abelian varieties, and extends previous work of Silverman for elliptic surfaces.

A note on the torsion of the Jacobians of superelliptic curves y q = x p + a

Tomasz Jędrzejak (2016)

Banach Center Publications

This article is a short version of the paper published in J. Number Theory 145 (2014) but we add new results and a brief discussion about the Torsion Conjecture. Consider the family of superelliptic curves (over ℚ) C q , p , a : y q = x p + a , and its Jacobians J q , p , a , where 2 < q < p are primes. We give the full (resp. partial) characterization of the torsion part of J 3 , 5 , a ( ) (resp. J q , p , a ( ) ). The main tools are computations of the zeta function of C 3 , 5 , a (resp. C q , p , a ) over l for primes l ≡ 1,2,4,8,11 (mod 15) (resp. for primes l ≡ -1 (mod qp))...

Autour de la conjecture de Zilber-Pink

Gaël Rémond (2009)

Journal de Théorie des Nombres de Bordeaux

Nous dressons un rapide panorama de résultats allant dans le sens de la conjecture suivante : l’intersection d’une sous-variété X d’une variété semi-abélienne A et de l’union de tous les sous-groupes algébriques de A de codimension au moins dim X + 1 n’est pas Zariski-dense dans X dès que X n’est pas contenue dans un sous-groupe algébrique strict de A .

Characterization of the torsion of the Jacobians of two families of hyperelliptic curves

Tomasz Jędrzejak (2013)

Acta Arithmetica

Consider the families of curves C n , A : y ² = x + A x and C n , A : y ² = x + A where A is a nonzero rational. Let J n , A and J n , A denote their respective Jacobian varieties. The torsion points of C 3 , A ( ) and C 3 , A ( ) are well known. We show that for any nonzero rational A the torsion subgroup of J 7 , A ( ) is a 2-group, and for A ≠ 4a⁴,-1728,-1259712 this subgroup is equal to J 7 , A ( ) [ 2 ] (for a excluded values of A, with the possible exception of A = -1728, this group has a point of order 4). This is a variant of the corresponding results for J 3 , A (A ≠ 4) and J 5 , A . We also almost...

Currently displaying 1 – 20 of 129

Page 1 Next