Displaying 181 – 200 of 342

Showing per page

On asymptotic density and uniformly distributed sequences

Ryszard Frankiewicz, Grzegorz Plebanek (1996)

Studia Mathematica

Assuming Martin's axiom we show that if X is a dyadic space of weight at most continuum then every Radon measure on X admits a uniformly distributed sequence. This answers a problem posed by Mercourakis [10]. Our proof is based on an auxiliary result concerning finitely additive measures on ω and asymptotic density.

On functions with bounded remainder

P. Hellekalek, Gerhard Larcher (1989)

Annales de l'institut Fourier

Let T : / / be a von Neumann-Kakutani q - adic adding machine transformation and let ϕ C 1 ( [ 0 , 1 ] ) . Put ϕ n ( x ) : = ϕ ( x ) + ϕ ( T x ) + ... + ϕ ( T n - 1 x ) , x / , n . We study three questions:1. When will ( ϕ n ( x ) ) n 1 be bounded?2. What can be said about limit points of ( ϕ n ( x ) ) n 1 ? 3. When will the skew product ( x , y ) ( T x , y + ϕ ( x ) ) be ergodic on / × ?

On normal lattice configurations and simultaneously normal numbers

Mordechay B. Levin (2001)

Journal de théorie des nombres de Bordeaux

Let q , q 1 , , q s 2 be integers, and let α 1 , α 2 , be a sequence of real numbers. In this paper we prove that the lower bound of the discrepancy of the double sequence ( α m q n , , α m + s - 1 q n ) m , n = 1 M N coincides (up to a logarithmic factor) with the lower bound of the discrepancy of ordinary sequences ( x n ) n = 1 M N in s -dimensional unit cube ( s , M , N = 1 , 2 , ) . We also find a lower bound of the discrepancy (up to a logarithmic factor) of the sequence ( α 1 q 1 n , , α s q s n ) n = 1 N (Korobov’s problem).

On normal numbers mod 2

Youngho Ahn, Geon Choe (1998)

Colloquium Mathematicae

It is proved that a real-valued function f ( x ) = exp ( π i χ I ( x ) ) , where I is an interval contained in [0,1), is not of the form f ( x ) = q ( 2 x ) ¯ q ( x ) with |q(x)|=1 a.e. if I has dyadic endpoints. A relation of this result to the uniform distribution mod 2 is also shown.

On strong uniform distribution, II. The infinite-dimensional case

Y. Lacroix (1998)

Acta Arithmetica

We construct infinite-dimensional chains that are L¹ good for almost sure convergence, which settles a question raised in this journal [N]. We give some conditions for a coprime generated chain to be bad for L² or L , using the entropy method. It follows that such a chain with positive lower density is bad for L . There also exist such bad chains with zero density.

Currently displaying 181 – 200 of 342