The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be the number of divisors of ; let us defineIt has been shown that, if we setthe quotient is bounded for fixed. The aim of this paper is to give an explicit value for the inferior and superior limits of this quotient when . For instance, when , we proveand
Soit le nombre de groupes abéliens d’ordre . Pour étudier les grandes valeurs prises par , on définit, comme l’a fait Ramanujan pour le nombre de diviseurs de , les nombres -hautement composés et -hautement composés supérieurs. Pour calculer ces derniers nombres, on détermine les sommets de l’enveloppe inférieure convexe de la fonction où est le nombre de partitions de . Sous l’hypothèse de Riemann, on donne un développement asymptotique de l’ordre maximum de la fonction .
On donne des estimations précises pour les quantités , où est une fonction arithmétique additive et et sont des nombres réels.
Let Ω(n) and ω(n) denote the number of distinct prime factors of the positive integer n, counted respectively with and without multiplicity. Let denote the Piltz function (which counts the number of ways of writing n as a product of k factors). We obtain a precise estimate of the sum
for a class of multiplicative functions f, including in particular , unconditionally if 1 ≤ k ≤ 3, and under some reasonable assumptions if k ≥ 4.
The result also applies to f(n) = φ(n)/n (where φ is the totient...
Soit un nombre entier. On développe ici une méthode générale fournissant un équivalent asymptotique de la somme “courte”sous certaines conditions relatives à . Plusieurs applications sont traitées, notamment la preuve d’une conjecture d’Erdös relative à la répartition des diviseurs de !
E. Landau has given an asymptotic estimate for the number of integers up to x whose prime factors all belong to some arithmetic progressions. In this paper, by using the Selberg-Delange formula, we evaluate the number of elements of somewhat more complicated sets. For instance, if ω(m) (resp. Ω(m)) denotes the number of prime factors of m without multiplicity (resp. with multiplicity), we give an asymptotic estimate as x → ∞ of the number of integers m satisfying , all prime factors of m are congruent...
Currently displaying 61 –
80 of
85