The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let α, β and γ be algebraic numbers of respective degrees a, b and c over ℚ such that α + β + γ = 0. We prove that there exist algebraic numbers α₁, β₁ and γ₁ of the same respective degrees a, b and c over ℚ such that α₁ β₁ γ₁ = 1. This proves a previously formulated conjecture. We also investigate the problem of describing the set of triplets (a,b,c) ∈ ℕ³ for which there exist finite field extensions K/k and L/k (of a fixed field k) of degrees a and b, respectively, such that the degree of the...
Currently displaying 1 –
20 of
51