Displaying 341 – 360 of 2019

Showing per page

Construction, properties and applications of finite neofields

Anthony Donald Keedwell (2000)

Commentationes Mathematicae Universitatis Carolinae

We give a short account of the construction and properties of left neofields. Most useful in practice seem to be neofields based on the cyclic group and particularly those having an additional divisibility property, called D-neofields. We shall give examples of applications to the construction of orthogonal latin squares, to the design of tournaments balanced for residual effects and to cryptography.

Constructions de polynômes génériques à groupe de Galois résoluble

Odile Lecacheux (1998)

Acta Arithmetica

On sait que les seuls sous-groupes résolubles transitifs du groupe symétrique ₅ sont isomorphes au groupe de Frobenius 20 , au groupe diédral D₅ et au groupe cyclique C₅. Nous montrerons comment construire des extensions de degré 5 à groupe de Galois résoluble à l’aide de courbes elliptiques. Dans un premier paragraphe nous utiliserons une courbe elliptique ayant un point de 5-torsion rationnel pour les groupes D₅ et C₅. Puis, dans le paragraphe suivant, nous utiliserons une courbe elliptique ayant...

Corps C-minimaux, en l’honneur de François Lucas

Françoise Delon (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

La classe des constructibles de la géométrie algébrique est close par projection. La théorie des modèles exprime ce fait en disant que les corps algébriquement clos éliminent les quantificateurs dans le langage des anneaux. De façon analogue, les corps algébriquement clos non trivialement valués éliminent les quantificateurs dans le langage des anneaux enrichi de la relation dite de divisibilité v ( x ) v ( y ) . Cela implique en particulier la «  C -minimalité » : une partie définissable d’un corps algébriquement...

Currently displaying 341 – 360 of 2019