Displaying 661 – 680 of 2019

Showing per page

Generalized Kummer theory and its applications

Toru Komatsu (2009)

Annales mathématiques Blaise Pascal

In this report we study the arithmetic of Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory. It is useful under the condition that ζ k and ω k where ζ is a primitive n -th root of unity and ω = ζ + ζ - 1 . In particular, this result with ζ k implies the classical Kummer theory. We also present a method for calculating not only the conductor but also the Artin symbols of the cyclic extension which is defined by the Rikuna polynomial.

Generalized Staircases: Recurrence and Symmetry

W. Patrick Hooper, Barak Weiss (2012)

Annales de l’institut Fourier

We study infinite translation surfaces which are -covers of compact translation surfaces. We obtain conditions ensuring that such surfaces have Veech groups which are Fuchsian of the first kind and give a necessary and sufficient condition for recurrence of their straight-line flows. Extending results of Hubert and Schmithüsen, we provide examples of infinite non-arithmetic lattice surfaces, as well as surfaces with infinitely generated Veech groups.

Currently displaying 661 – 680 of 2019