Displaying 841 – 860 of 2019

Showing per page

Liouvillian first integrals of differential equations

Guy Casale (2011)

Banach Center Publications

In this paper we generalize to any dimension and codimension some theorems about existence of Liouvillian solutions or first integrals proved by M. Singer in Liouvillian first integrals of differential equations (1992) for first order differential equations.

Local derivations for quotient and factor algebras of polynomials

Andrzej Nowicki, Ilona Nowosad (2003)

Colloquium Mathematicae

We describe all Kadison algebras of the form S - 1 k [ t ] , where k is an algebraically closed field and S is a multiplicative subset of k[t]. We also describe all Kadison algebras of the form k[t]/I, where k is a field of characteristic zero.

Local derivations in polynomial and power series rings

Janusz Zieliński (2002)

Colloquium Mathematicae

We give a description of all local derivations (in the Kadison sense) in the polynomial ring in one variable in characteristic two. Moreover, we describe all local derivations in the power series ring in one variable in any characteristic.

Localisation formelle et groupe de Picard

Jean Fresnel, Marius Van Der Put (1983)

Annales de l'institut Fourier

Soient X un espace analytique affinoïde réduit sur un corps K complet pour une valeur absolue non archimédienne, r : X X ^ sa réduction canonique et p X ^ un point de la variété algébrique affine X ^ . Ce travail décrit la singularité du point p à l’aide d’objets associés à l’espace X : la localisation formelle 𝒪 X , ( p ) qui est une K -algèbre noethérienne de spectre maximal r - 1 ( p ) et dont la réduction est 𝒪 X ^ , ( p )  ; un complété formel 𝒪 X , ( p ) qui est une K -algèbre noethérienne dont la réduction est 𝒪 X ^ , ( p ) . Les résultats essentiels sont obtenus...

Locally unbounded topological fields with topological nilpotents

J. E. Marcos (2002)

Fundamenta Mathematicae

We construct some locally unbounded topological fields having topologically nilpotent elements; this answers a question of Heine. The underlying fields are subfields of fields of formal power series. In particular, we get a locally unbounded topological field for which the set of topologically nilpotent elements is an open additive subgroup. We also exhibit a complete locally unbounded topological field which is a topological extension of the field of p-adic numbers; this topological field is a...

Lower bounds on the class number of algebraic function fields defined over any finite field

Stéphane Ballet, Robert Rolland (2012)

Journal de Théorie des Nombres de Bordeaux

We give lower bounds on the number of effective divisors of degree g - 1 with respect to the number of places of certain degrees of an algebraic function field of genus g defined over a finite field. We deduce lower bounds for the class number which improve the Lachaud - Martin-Deschamps bounds and asymptotically reaches the Tsfasman-Vladut bounds. We give examples of towers of algebraic function fields having a large class number.

Currently displaying 841 – 860 of 2019