Displaying 1341 – 1360 of 2019

Showing per page

Quantum-classical interactions and galois type extensions

Władysław Marcinek (2003)

Banach Center Publications

An algebraic model for the relation between a certain classical particle system and the quantum environment is proposed. The quantum environment is described by the category of possible quantum states. The initial particle system is represented by an associative algebra in the category of states. The key new observation is that particle interactions with the quantum environment can be described in terms of Hopf-Galois theory. This opens up a possibility to use quantum groups in our model of particle...

Quartic exercises.

Knus, Max-Albert, Tignol, Jean-Pierre (2003)

International Journal of Mathematics and Mathematical Sciences

Quasi-permutation polynomials

Vichian Laohakosol, Suphawan Janphaisaeng (2010)

Czechoslovak Mathematical Journal

A quasi-permutation polynomial is a polynomial which is a bijection from one subset of a finite field onto another with the same number of elements. This is a natural generalization of the familiar permutation polynomials. Basic properties of quasi-permutation polynomials are derived. General criteria for a quasi-permutation polynomial extending the well-known Hermite's criterion for permutation polynomials as well as a number of other criteria depending on the permuted domain and range are established....

Quaternion Extensions of Order 16

Michailov, Ivo (2005)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 12F12We describe several types of Galois extensions having as Galois group the quaternion group Q16 of order 16.This work is partially supported by project of Shumen University.

Quaternion extensions with restricted ramification

Peter Schmid (2014)

Acta Arithmetica

In any normal number field having Q₈, the quaternion group of order 8, as Galois group over the rationals, at least two finite primes must ramify. The classical example by Dedekind of such a field is extraordinary in that it is totally real and only the primes 2 and 3 are ramified. In this note we describe in detail all Q₈-fields over the rationals where only two (finite) primes are ramified. We also show that, for any integer n>3 and any prime p 1 ( m o d 2 n - 1 ) , there exist unique real and complex normal number...

Quotients of index two and general quotients in a space of orderings

Paweł Gładki, Murray Marshall (2015)

Fundamenta Mathematicae

We investigate quotient structures and quotient spaces of a space of orderings arising from subgroups of index two. We provide necessary and sufficient conditions for a quotient structure to be a quotient space that, among other things, depend on the stability index of the given space. The case of the space of orderings of the field ℚ(x) is particularly interesting, since then the theory developed simplifies significantly. A part of the theory firstly developed for quotients of index 2 generalizes...

R C * -поля

Ю.Л. Ершов, Ju. L. Eršov, Ǔ. L. Eršov, Ju. L. Eršov (1994)

Algebra i Logika

Currently displaying 1341 – 1360 of 2019