Displaying 181 – 200 of 252

Showing per page

The tame degree and related invariants of non-unique factorizations

Franz Halter-Koch (2008)

Acta Mathematica Universitatis Ostraviensis

Local tameness and the finiteness of the catenary degree are two crucial finiteness conditions in the theory of non-unique factorizations in monoids and integral domains. In this note, we refine the notion of local tameness and relate the resulting invariants with the usual tame degree and the ω -invariant. Finally we present a simple monoid which fails to be locally tame and yet has nice factorization properties.

The torsion theory and the Melkersson condition

Takeshi Yoshizawa (2020)

Czechoslovak Mathematical Journal

We consider a generalization of the notion of torsion theory, which is associated with a Serre subcategory over a commutative Noetherian ring. In 2008 Aghapournahr and Melkersson investigated the question of when local cohomology modules belong to a Serre subcategory of the module category. In their study, the notion of Melkersson condition was defined as a suitable condition in local cohomology theory. One of our purposes in this paper is to show how naturally the concept of Melkersson condition...

The valuated ring of the arithmetical functions as a power series ring

Emil Daniel Schwab, Gheorghe Silberberg (2001)

Archivum Mathematicum

The paper examines the ring A of arithmetical functions, identifying it to the domain of formal power series over 𝐂 in a countable set of indeterminates. It is proven that A is a complete ultrametric space and all its continuous endomorphisms are described. It is also proven that A is a quasi-noetherian ring.

Théorème de Hilbert-Samuel «arithmétique»

Ahmed Abbes, Thierry Bouche (1995)

Annales de l'institut Fourier

On donne une nouvelle démonstration directe du théorème de Hilbert-Samuel arithmétique et on déduit un critère numérique pour l’existence de sections d’un fibré en droite sur une variété arithmétique de norme sup inférieure à un.

Théorème des zéros effectif et élimination

P. Philippon (1989)

Journal de théorie des nombres de Bordeaux

Les paragraphes 1 et 2 rappellent les circonstances de l'exposé oral, tandis que le paragraphe 3 aborde un aspect particulier de la théorie de l'élimination : une notion de multiplicité d'un idéal en un point. Cette partie est le fruit de passionnantes discussions avec F. Amoroso.

Théorèmes de préparation Gevrey et étude de certaines applications formelles

Augustin Mouze (2003)

Annales Polonici Mathematici

We consider subrings A of the ring of formal power series. They are defined by growth conditions on coefficients such as, for instance, Gevrey conditions. We prove preparation theorems of Malgrange type in these rings. As a consequence we study maps F from s to p without constant term such that the rank of the Jacobian matrix of F is equal to 1. Let be a formal power series. If F is a holomorphic map, the following result is well known: ∘ F is analytic implies there exists a convergent power series...

Théorie de Fontaine en égales caractéristiques

Alain Genestier, Vincent Lafforgue (2011)

Annales scientifiques de l'École Normale Supérieure

Les chtoucas locaux sont des analogues en égales caractéristiques des groupes p -divisibles — par exemple on leur associe un module de Tate, qui est un module libre sur l’anneau d’entiers d’un corps local K de caractéristique positive. Nous associons à un chtouca local une structure de Hodge (ou, plus précisément, une structure de Hodge-Pink), ce qui induit un morphisme de périodes analogue à celui construit par Rapoport et Zink. Pour les structures de Hodge-Pink définies sur une extension finie...

Currently displaying 181 – 200 of 252