The structure of indecomposable injective modules.
Local tameness and the finiteness of the catenary degree are two crucial finiteness conditions in the theory of non-unique factorizations in monoids and integral domains. In this note, we refine the notion of local tameness and relate the resulting invariants with the usual tame degree and the -invariant. Finally we present a simple monoid which fails to be locally tame and yet has nice factorization properties.
We consider a generalization of the notion of torsion theory, which is associated with a Serre subcategory over a commutative Noetherian ring. In 2008 Aghapournahr and Melkersson investigated the question of when local cohomology modules belong to a Serre subcategory of the module category. In their study, the notion of Melkersson condition was defined as a suitable condition in local cohomology theory. One of our purposes in this paper is to show how naturally the concept of Melkersson condition...
The paper examines the ring of arithmetical functions, identifying it to the domain of formal power series over in a countable set of indeterminates. It is proven that is a complete ultrametric space and all its continuous endomorphisms are described. It is also proven that is a quasi-noetherian ring.
On donne une nouvelle démonstration directe du théorème de Hilbert-Samuel arithmétique et on déduit un critère numérique pour l’existence de sections d’un fibré en droite sur une variété arithmétique de norme sup inférieure à un.
On montre que tout anneau local régulier complet muni d’une valuation de rang peut être plongé, en tant qu’anneau valué, dans un anneau de séries de Puiseux généralisées.
Les paragraphes 1 et 2 rappellent les circonstances de l'exposé oral, tandis que le paragraphe 3 aborde un aspect particulier de la théorie de l'élimination : une notion de multiplicité d'un idéal en un point. Cette partie est le fruit de passionnantes discussions avec F. Amoroso.
We consider subrings A of the ring of formal power series. They are defined by growth conditions on coefficients such as, for instance, Gevrey conditions. We prove preparation theorems of Malgrange type in these rings. As a consequence we study maps F from to without constant term such that the rank of the Jacobian matrix of F is equal to 1. Let be a formal power series. If F is a holomorphic map, the following result is well known: ∘ F is analytic implies there exists a convergent power series...
Les chtoucas locaux sont des analogues en égales caractéristiques des groupes -divisibles — par exemple on leur associe un module de Tate, qui est un module libre sur l’anneau d’entiers d’un corps local de caractéristique positive. Nous associons à un chtouca local une structure de Hodge (ou, plus précisément, une structure de Hodge-Pink), ce qui induit un morphisme de périodes analogue à celui construit par Rapoport et Zink. Pour les structures de Hodge-Pink définies sur une extension finie...